Conlang/libconlang/src/interpreter.rs

962 lines
34 KiB
Rust
Raw Normal View History

//! Interprets an AST as a program
use crate::ast::preamble::*;
use env::Environment;
use error::{Error, IResult};
use temp_type_impl::ConValue;
/// Callable types can be called from within a Conlang program
pub trait Callable: std::fmt::Debug {
/// Calls this [Callable] in the provided [Environment], with [ConValue] args \
/// The Callable is responsible for checking the argument count and validating types
fn call(&self, interpreter: &mut Environment, args: &[ConValue]) -> IResult<ConValue>;
/// Returns the common name of this identifier.
fn name(&self) -> &str;
}
/// [BuiltIn]s are [Callable]s with bespoke definitions
pub trait BuiltIn: std::fmt::Debug + Callable {}
pub mod temp_type_impl {
2023-10-26 19:51:13 +00:00
//! Temporary implementations of Conlang values
//!
//! The most permanent fix is a temporary one.
use super::{
error::{Error, IResult},
function::Function,
BuiltIn, Callable, Environment,
};
use std::ops::*;
/// A Conlang value
///
/// This is a hack to work around the fact that Conlang doesn't
/// have a functioning type system yet :(
#[derive(Clone, Debug, Default)]
pub enum ConValue {
/// The empty/unit `()` type
#[default]
Empty,
/// An integer
Int(i128),
/// A boolean
Bool(bool),
/// A unicode character
Char(char),
/// A string
String(String),
/// A tuple
Tuple(Vec<ConValue>),
/// An exclusive range
RangeExc(i128, i128),
/// An inclusive range
RangeInc(i128, i128),
/// A callable thing
Function(Function),
/// A built-in function
BuiltIn(&'static dyn BuiltIn),
}
impl ConValue {
/// Gets whether the current value is true or false
pub fn truthy(&self) -> IResult<bool> {
match self {
ConValue::Bool(v) => Ok(*v),
_ => Err(Error::TypeError)?,
}
}
pub fn range_exc(self, other: Self) -> IResult<Self> {
let (Self::Int(a), Self::Int(b)) = (self, other) else {
Err(Error::TypeError)?
};
Ok(Self::RangeExc(a, b.saturating_sub(1)))
}
pub fn range_inc(self, other: Self) -> IResult<Self> {
let (Self::Int(a), Self::Int(b)) = (self, other) else {
Err(Error::TypeError)?
};
Ok(Self::RangeInc(a, b))
}
cmp! {
lt: false, <;
lt_eq: true, <=;
eq: true, ==;
neq: false, !=;
gt_eq: true, >=;
gt: false, >;
}
assign! {
add_assign: +;
bitand_assign: &;
bitor_assign: |;
bitxor_assign: ^;
div_assign: /;
mul_assign: *;
rem_assign: %;
shl_assign: <<;
shr_assign: >>;
sub_assign: -;
}
}
impl Callable for ConValue {
fn name(&self) -> &str {
match self {
ConValue::Function(func) => func.name(),
ConValue::BuiltIn(func) => func.name(),
_ => "",
}
}
fn call(&self, interpreter: &mut Environment, args: &[ConValue]) -> IResult<ConValue> {
match self {
Self::Function(func) => func.call(interpreter, args),
Self::BuiltIn(func) => func.call(interpreter, args),
_ => Err(Error::NotCallable(self.clone())),
}
}
}
/// Templates comparison functions for [ConValue]
macro cmp ($($fn:ident: $empty:literal, $op:tt);*$(;)?) {$(
/// TODO: Remove when functions are implemented:
/// Desugar into function calls
pub fn $fn(&self, other: &Self) -> IResult<Self> {
match (self, other) {
(Self::Empty, Self::Empty) => Ok(Self::Bool($empty)),
(Self::Int(a), Self::Int(b)) => Ok(Self::Bool(a $op b)),
(Self::Bool(a), Self::Bool(b)) => Ok(Self::Bool(a $op b)),
(Self::Char(a), Self::Char(b)) => Ok(Self::Bool(a $op b)),
(Self::String(a), Self::String(b)) => Ok(Self::Bool(a $op b)),
_ => Err(Error::TypeError)
}
}
)*}
macro assign($( $fn: ident: $op: tt );*$(;)?) {$(
pub fn $fn(&mut self, other: Self) -> IResult<()> {
*self = (std::mem::take(self) $op other)?;
Ok(())
}
)*}
/// Implements [From] for an enum with 1-tuple variants
macro from ($($T:ty => $v:expr),*$(,)?) {
$(impl From<$T> for ConValue {
fn from(value: $T) -> Self { $v(value.into()) }
})*
}
from! {
i128 => ConValue::Int,
bool => ConValue::Bool,
char => ConValue::Char,
&str => ConValue::String,
String => ConValue::String,
Function => ConValue::Function,
Vec<ConValue> => ConValue::Tuple,
}
impl From<()> for ConValue {
fn from(_: ()) -> Self {
Self::Empty
}
}
impl From<&[ConValue]> for ConValue {
fn from(value: &[ConValue]) -> Self {
match value.len() {
0 => Self::Empty,
1 => value[0].clone(),
_ => Self::Tuple(value.into()),
}
}
}
/// Implements binary [std::ops] traits for [ConValue]
///
/// TODO: Desugar operators into function calls
macro ops($($trait:ty: $fn:ident = [$($match:tt)*])*) {
$(impl $trait for ConValue {
type Output = IResult<Self>;
/// TODO: Desugar operators into function calls
fn $fn(self, rhs: Self) -> Self::Output {Ok(match (self, rhs) {$($match)*})}
})*
}
ops! {
Add: add = [
(ConValue::Empty, ConValue::Empty) => ConValue::Empty,
(ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a + b),
(ConValue::String(a), ConValue::String(b)) => ConValue::String(a + &b),
_ => Err(Error::TypeError)?
]
BitAnd: bitand = [
(ConValue::Empty, ConValue::Empty) => ConValue::Empty,
(ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a & b),
(ConValue::Bool(a), ConValue::Bool(b)) => ConValue::Bool(a & b),
_ => Err(Error::TypeError)?
]
BitOr: bitor = [
(ConValue::Empty, ConValue::Empty) => ConValue::Empty,
(ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a | b),
(ConValue::Bool(a), ConValue::Bool(b)) => ConValue::Bool(a | b),
_ => Err(Error::TypeError)?
]
BitXor: bitxor = [
(ConValue::Empty, ConValue::Empty) => ConValue::Empty,
(ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a ^ b),
(ConValue::Bool(a), ConValue::Bool(b)) => ConValue::Bool(a ^ b),
_ => Err(Error::TypeError)?
]
Div: div = [
(ConValue::Empty, ConValue::Empty) => ConValue::Empty,
(ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a / b),
_ => Err(Error::TypeError)?
]
Mul: mul = [
(ConValue::Empty, ConValue::Empty) => ConValue::Empty,
(ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a * b),
_ => Err(Error::TypeError)?
]
Rem: rem = [
(ConValue::Empty, ConValue::Empty) => ConValue::Empty,
(ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a % b),
_ => Err(Error::TypeError)?
]
Shl: shl = [
(ConValue::Empty, ConValue::Empty) => ConValue::Empty,
(ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a << b),
_ => Err(Error::TypeError)?
]
Shr: shr = [
(ConValue::Empty, ConValue::Empty) => ConValue::Empty,
(ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a >> b),
_ => Err(Error::TypeError)?
]
Sub: sub = [
(ConValue::Empty, ConValue::Empty) => ConValue::Empty,
(ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a - b),
_ => Err(Error::TypeError)?
]
}
impl Neg for ConValue {
type Output = IResult<Self>;
fn neg(self) -> Self::Output {
Ok(match self {
ConValue::Empty => ConValue::Empty,
ConValue::Int(v) => ConValue::Int(-v),
_ => Err(Error::TypeError)?,
})
}
}
impl Not for ConValue {
type Output = IResult<Self>;
fn not(self) -> Self::Output {
Ok(match self {
ConValue::Empty => ConValue::Empty,
ConValue::Int(v) => ConValue::Int(!v),
ConValue::Bool(v) => ConValue::Bool(!v),
_ => Err(Error::TypeError)?,
})
}
}
impl std::fmt::Display for ConValue {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
ConValue::Empty => "Empty".fmt(f),
ConValue::Int(v) => v.fmt(f),
ConValue::Bool(v) => v.fmt(f),
ConValue::Char(v) => v.fmt(f),
ConValue::String(v) => v.fmt(f),
ConValue::RangeExc(a, b) => write!(f, "{a}..{}", b + 1),
ConValue::RangeInc(a, b) => write!(f, "{a}..={b}"),
ConValue::Tuple(tuple) => {
'('.fmt(f)?;
for (idx, element) in tuple.iter().enumerate() {
if idx > 0 {
", ".fmt(f)?
}
element.fmt(f)?
}
')'.fmt(f)
}
ConValue::Function(func) => {
write!(f, "fn {}", func.name())
}
ConValue::BuiltIn(func) => {
write!(f, "internal fn {}", func.name())
}
}
}
}
}
/// A work-in-progress tree walk interpreter for Conlang
pub trait Interpret {
/// Interprets this thing in the given [`Environment`].
///
/// Everything returns a value!™
fn interpret(&self, env: &mut Environment) -> IResult<ConValue>;
}
impl Interpret for Start {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
self.0.interpret(env)
}
}
impl Interpret for Program {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
let mut out = ConValue::Empty;
for stmt in &self.0 {
out = stmt.interpret(env)?;
}
Ok(out)
}
}
impl Interpret for Stmt {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
match self {
Stmt::Let(l) => l.interpret(env),
Stmt::Fn(f) => f.interpret(env),
Stmt::Expr(e) => e.interpret(env),
}
}
}
impl Interpret for Let {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
let Let { name: Name { symbol: Identifier { name, .. }, .. }, init, .. } = self;
if let Some(init) = init {
let init = init.interpret(env)?;
env.insert(name, Some(init));
} else {
env.insert(name, None);
}
Ok(ConValue::Empty)
}
}
impl Interpret for FnDecl {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
// register the function in the current environment
env.insert_fn(self);
Ok(ConValue::Empty)
}
}
impl Interpret for Expr {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
self.0.interpret(env)
}
}
impl Interpret for Operation {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
match self {
Operation::Assign(op) => op.interpret(env),
Operation::Binary(op) => op.interpret(env),
Operation::Unary(op) => op.interpret(env),
Operation::Call(op) => op.interpret(env),
}
}
}
impl Interpret for Assign {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
use operator::Assign;
let math::Assign { target: Identifier { name, .. }, operator, init } = self;
let init = init.interpret(env)?;
let target = env.get_mut(name)?;
if let Assign::Assign = operator {
use std::mem::discriminant as variant;
// runtime typecheck
match target {
Some(value) if variant(value) == variant(&init) => {
*value = init;
}
value @ None => *value = Some(init),
_ => Err(Error::TypeError)?,
}
return Ok(ConValue::Empty);
}
let Some(target) = target else {
return Err(Error::NotInitialized(name.into()));
};
match operator {
Assign::AddAssign => target.add_assign(init)?,
Assign::SubAssign => target.sub_assign(init)?,
Assign::MulAssign => target.mul_assign(init)?,
Assign::DivAssign => target.div_assign(init)?,
Assign::RemAssign => target.rem_assign(init)?,
Assign::BitAndAssign => target.bitand_assign(init)?,
Assign::BitOrAssign => target.bitor_assign(init)?,
Assign::BitXorAssign => target.bitxor_assign(init)?,
Assign::ShlAssign => target.shl_assign(init)?,
Assign::ShrAssign => target.shr_assign(init)?,
_ => (),
}
Ok(ConValue::Empty)
}
}
impl Interpret for Binary {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
let Binary { first, other } = self;
let mut first = first.interpret(env)?;
for (op, other) in other {
first = match op {
operator::Binary::LogAnd => {
if first.truthy()? {
other.interpret(env)
} else {
return Ok(first); // Short circuiting
}
}
operator::Binary::LogOr => {
if !first.truthy()? {
other.interpret(env)
} else {
return Ok(first); // Short circuiting
}
}
operator::Binary::LogXor => {
// TODO: It should be possible to assemble better error information from this
let (lhs, rhs) = (first.truthy()?, other.interpret(env)?.truthy()?);
Ok(ConValue::Bool(lhs ^ rhs))
}
// TODO: For all overloadable operators, transmute into function call
operator::Binary::Mul => first * other.interpret(env)?,
operator::Binary::Div => first / other.interpret(env)?,
operator::Binary::Rem => first % other.interpret(env)?,
operator::Binary::Add => first + other.interpret(env)?,
operator::Binary::Sub => first - other.interpret(env)?,
operator::Binary::Lsh => first << other.interpret(env)?,
operator::Binary::Rsh => first >> other.interpret(env)?,
operator::Binary::BitAnd => first & other.interpret(env)?,
operator::Binary::BitOr => first | other.interpret(env)?,
operator::Binary::BitXor => first ^ other.interpret(env)?,
operator::Binary::RangeExc => first.range_exc(other.interpret(env)?),
operator::Binary::RangeInc => first.range_inc(other.interpret(env)?),
operator::Binary::Less => first.lt(&other.interpret(env)?),
operator::Binary::LessEq => first.lt_eq(&other.interpret(env)?),
operator::Binary::Equal => first.eq(&other.interpret(env)?),
operator::Binary::NotEq => first.neq(&other.interpret(env)?),
operator::Binary::GreaterEq => first.gt_eq(&other.interpret(env)?),
operator::Binary::Greater => first.gt(&other.interpret(env)?),
}?;
}
Ok(first)
}
}
impl Interpret for Unary {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
let Unary { operand, operators } = self;
let mut operand = operand.interpret(env)?;
for op in operators.iter().rev() {
operand = match op {
operator::Unary::RefRef => todo!(),
operator::Unary::Ref => todo!(),
operator::Unary::Deref => todo!(),
operator::Unary::Neg => (-operand)?,
operator::Unary::Not => (!operand)?,
operator::Unary::At => todo!(),
operator::Unary::Hash => {
println!("{operand}");
operand
}
operator::Unary::Tilde => todo!(),
};
}
Ok(operand)
}
}
impl Interpret for Call {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
match self {
Call::FnCall(fncall) => fncall.interpret(env),
Call::Primary(primary) => primary.interpret(env),
}
}
}
impl Interpret for FnCall {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
// evaluate the callee
let mut callee = self.callee.interpret(env)?;
for args in &self.args {
let ConValue::Tuple(args) = args.interpret(env)? else {
Err(Error::TypeError)?
};
callee = callee.call(env, &args)?;
}
Ok(callee)
}
}
impl Interpret for Primary {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
match self {
Primary::Identifier(prim) => prim.interpret(env),
Primary::Literal(prim) => prim.interpret(env),
Primary::Block(prim) => prim.interpret(env),
Primary::Group(prim) => prim.interpret(env),
Primary::Branch(prim) => prim.interpret(env),
}
}
}
impl Interpret for Identifier {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
env.get(&self.name).cloned()
}
}
impl Interpret for Literal {
fn interpret(&self, _env: &mut Environment) -> IResult<ConValue> {
Ok(match self {
Literal::String(value) => ConValue::from(value.as_str()),
Literal::Char(value) => ConValue::Char(*value),
Literal::Bool(value) => ConValue::Bool(*value),
Literal::Float(value) => todo!("Float values in interpreter: {value:?}"),
Literal::Int(value) => ConValue::Int(*value as _),
})
}
}
impl Interpret for Block {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
let mut env = env.frame("block");
// TODO: this could TOTALLY be done with a binary operator.
for stmt in &self.statements {
stmt.interpret(&mut env)?;
}
if let Some(expr) = self.expr.as_ref() {
expr.interpret(&mut env)
} else {
Ok(ConValue::Empty)
}
}
}
impl Interpret for Group {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
match self {
Group::Tuple(tuple) => tuple.interpret(env),
Group::Single(value) => value.interpret(env),
Group::Empty => Ok(ConValue::Empty),
}
}
}
impl Interpret for Tuple {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
Ok(ConValue::Tuple(self.elements.iter().try_fold(
vec![],
|mut out, element| {
out.push(element.interpret(env)?);
Ok(out)
},
)?))
}
}
impl Interpret for Flow {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
match self {
Flow::While(flow) => flow.interpret(env),
Flow::If(flow) => flow.interpret(env),
Flow::For(flow) => flow.interpret(env),
Flow::Continue(flow) => flow.interpret(env),
Flow::Return(flow) => flow.interpret(env),
Flow::Break(flow) => flow.interpret(env),
}
}
}
impl Interpret for While {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
while self.cond.interpret(env)?.truthy()? {
match self.body.interpret(env) {
Err(Error::Break(value)) => return Ok(value),
Err(Error::Continue) => continue,
e => e?,
};
}
if let Some(other) = &self.else_ {
other.interpret(env)
} else {
Ok(ConValue::Empty)
}
}
}
impl Interpret for Else {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
self.expr.interpret(env)
}
}
impl Interpret for If {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
if self.cond.interpret(env)?.truthy()? {
self.body.interpret(env)
} else if let Some(other) = &self.else_ {
other.interpret(env)
} else {
Ok(ConValue::Empty)
}
}
}
impl Interpret for For {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
let bounds = match self.iter.interpret(env)? {
ConValue::RangeExc(a, b) => a..=b,
ConValue::RangeInc(a, b) => a..=b,
_ => Err(Error::TypeError)?,
};
let mut env = env.frame("loop variable");
for loop_var in bounds {
env.insert(&self.var.name, Some(loop_var.into()));
match self.body.interpret(&mut env) {
Err(Error::Break(value)) => return Ok(value),
Err(Error::Continue) => continue,
result => result?,
};
}
if let Some(other) = &self.else_ {
other.interpret(&mut env)
} else {
Ok(ConValue::Empty)
}
}
}
impl Interpret for Continue {
fn interpret(&self, _env: &mut Environment) -> IResult<ConValue> {
Err(Error::Continue)
}
}
impl Interpret for Return {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
Err(Error::Return(self.expr.interpret(env)?))
}
}
impl Interpret for Break {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
Err(Error::Break(self.expr.interpret(env)?))
}
}
pub mod function {
//! Represents a block of code which lives inside the Interpreter
use super::{Callable, ConValue, Environment, Error, FnDecl, IResult, Identifier, Interpret};
use crate::ast::preamble::Name;
/// Represents a block of code which persists inside the Interpreter
#[derive(Clone, Debug)]
pub struct Function {
/// Stores the contents of the function declaration
decl: Box<FnDecl>,
// /// Stores the enclosing scope of the function
// env: Box<Environment>,
}
impl Function {
pub fn new(decl: &FnDecl) -> Self {
Self { decl: decl.clone().into() }
}
}
impl Callable for Function {
fn name(&self) -> &str {
&self.decl.name.symbol.name
}
fn call(&self, env: &mut Environment, args: &[ConValue]) -> IResult<ConValue> {
// Check arg mapping
if args.len() != self.decl.args.len() {
return Err(Error::ArgNumber { want: self.decl.args.len(), got: args.len() });
}
// TODO: Isolate cross-function scopes!
// let mut env = self.env.clone();
let mut frame = env.frame("fn args");
for (Name { symbol: Identifier { name, .. }, .. }, value) in
self.decl.args.iter().zip(args)
{
frame.insert(name, Some(value.clone()));
}
match self.decl.body.interpret(&mut frame) {
Err(Error::Return(value)) => Ok(value),
Err(Error::Break(value)) => Err(Error::BadBreak(value)),
result => result,
}
}
}
}
pub mod builtin {
//! Implementations of built-in functions
mod builtin_imports {
pub use crate::interpreter::{
env::Environment, error::IResult, temp_type_impl::ConValue, BuiltIn, Callable,
};
}
use super::BuiltIn;
/// Builtins to load when a new interpreter is created
pub const DEFAULT_BUILTINS: &[&dyn BuiltIn] = &[&print::Print, &dbg::Dbg, &dump::Dump];
mod print {
//! Implements the unstable `print(...)` builtin
use super::builtin_imports::*;
/// Implements the `print(...)` builtin
#[derive(Clone, Debug)]
pub struct Print;
impl BuiltIn for Print {}
#[rustfmt::skip]
impl Callable for Print {
fn name(&self) -> &'static str { "print" }
fn call(&self, _inter: &mut Environment, args: &[ConValue]) -> IResult<ConValue> {
for arg in args {
print!("{arg}")
}
println!();
Ok(ConValue::Empty)
}
}
}
mod dbg {
//! Implements the unstable `dbg(...)` builtin
use super::builtin_imports::*;
#[derive(Clone, Debug)]
pub struct Dbg;
impl BuiltIn for Dbg {}
#[rustfmt::skip]
impl Callable for Dbg {
fn name(&self) -> &str { "dbg" }
fn call(&self, _inter: &mut Environment, args: &[ConValue]) -> IResult<ConValue> {
println!("{args:?}");
Ok(args.into())
}
}
}
mod dump {
use super::builtin_imports::*;
#[derive(Clone, Debug)]
pub struct Dump;
impl BuiltIn for Dump {}
impl Callable for Dump {
fn call(&self, env: &mut Environment, _args: &[ConValue]) -> IResult<ConValue> {
println!("{}", *env);
Ok(ConValue::Empty)
}
fn name(&self) -> &str {
"dump"
}
}
}
}
pub mod env {
//! Lexical and non-lexical scoping for variables
use super::{
builtin::DEFAULT_BUILTINS,
error::{Error, IResult},
function::Function,
temp_type_impl::ConValue,
Callable, FnDecl, Interpret,
};
use std::{
collections::HashMap,
fmt::Display,
ops::{Deref, DerefMut},
};
/// Implements a nested lexical scope
#[derive(Clone, Debug)]
pub struct Environment {
frames: Vec<(HashMap<String, Option<ConValue>>, &'static str)>,
}
impl Display for Environment {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
for (frame, name) in self.frames.iter().rev() {
writeln!(f, "--- {name} ---")?;
for (var, val) in frame {
write!(f, "- {var}: ")?;
match val {
Some(value) => writeln!(f, "{value}"),
None => writeln!(f, "<undefined>"),
}?
}
}
Ok(())
}
}
impl Default for Environment {
fn default() -> Self {
let mut builtins = HashMap::new();
for &builtin in DEFAULT_BUILTINS {
builtins.insert(builtin.name().into(), Some(ConValue::BuiltIn(builtin)));
}
// FIXME: Temporary until modules are implemented
Self { frames: vec![(builtins, "builtins"), (HashMap::new(), "globals")] }
}
}
impl Environment {
pub fn new() -> Self {
Self::default()
}
/// Creates an [Environment] with no [builtins](super::builtin)
pub fn no_builtins(name: &'static str) -> Self {
Self { frames: vec![(Default::default(), name)] }
}
pub fn eval(&mut self, node: &impl Interpret) -> IResult<ConValue> {
node.interpret(self)
}
/// Calls a function inside the interpreter's scope,
/// and returns the result
pub fn call(&mut self, name: &str, args: &[ConValue]) -> IResult<ConValue> {
// FIXME: Clone to satisfy the borrow checker
let function = self.get(name)?.clone();
function.call(self, args)
}
/// Enters a nested scope, returning a [`Frame`] stack-guard.
///
/// [`Frame`] implements Deref/DerefMut for [`Environment`].
pub fn frame(&mut self, name: &'static str) -> Frame {
Frame::new(self, name)
}
/// Resolves a variable mutably.
///
/// Returns a mutable reference to the variable's record, if it exists.
pub fn get_mut(&mut self, id: &str) -> IResult<&mut Option<ConValue>> {
for (frame, _) in self.frames.iter_mut().rev() {
if let Some(var) = frame.get_mut(id) {
return Ok(var);
}
}
Err(Error::NotDefined(id.into()))
}
/// Resolves a variable immutably.
///
/// Returns a reference to the variable's contents, if it is defined and initialized.
pub fn get(&self, id: &str) -> IResult<&ConValue> {
for (frame, _) in self.frames.iter().rev() {
match frame.get(id) {
Some(Some(var)) => return Ok(var),
Some(None) => return Err(Error::NotInitialized(id.into())),
_ => (),
}
}
Err(Error::NotDefined(id.into()))
}
/// Inserts a new [ConValue] into this [Environment]
pub fn insert(&mut self, id: &str, value: Option<ConValue>) {
if let Some((frame, _)) = self.frames.last_mut() {
frame.insert(id.into(), value);
}
}
/// A convenience function for registering a [FnDecl] as a [Function]
pub fn insert_fn(&mut self, decl: &FnDecl) {
let (name, function) = (
decl.name.symbol.name.clone(),
Some(Function::new(decl).into()),
);
if let Some((frame, _)) = self.frames.last_mut() {
frame.insert(name, function);
}
}
}
/// Functions which aid in the implementation of [`Frame`]
impl Environment {
/// Enters a scope, creating a new namespace for variables
fn enter(&mut self, name: &'static str) -> &mut Self {
self.frames.push((Default::default(), name));
self
}
/// Exits the scope, destroying all local variables and
/// returning the outer scope, if there is one
fn exit(&mut self) -> &mut Self {
if self.frames.len() > 2 {
self.frames.pop();
}
self
}
}
/// Represents a stack frame
#[derive(Debug)]
pub struct Frame<'scope> {
scope: &'scope mut Environment,
}
impl<'scope> Frame<'scope> {
fn new(scope: &'scope mut Environment, name: &'static str) -> Self {
Self { scope: scope.enter(name) }
}
}
impl<'scope> Deref for Frame<'scope> {
type Target = Environment;
fn deref(&self) -> &Self::Target {
self.scope
}
}
impl<'scope> DerefMut for Frame<'scope> {
fn deref_mut(&mut self) -> &mut Self::Target {
self.scope
}
}
impl<'scope> Drop for Frame<'scope> {
fn drop(&mut self) {
self.scope.exit();
}
}
}
pub mod error {
//! The [Error] type represents any error thrown by the [Environment](super::Environment)
use super::temp_type_impl::ConValue;
pub type IResult<T> = Result<T, Error>;
/// Represents any error thrown by the [Environment](super::Environment)
#[derive(Clone, Debug)]
pub enum Error {
/// Propagate a Return value
Return(ConValue),
/// Propagate a Break value
Break(ConValue),
/// Break propagated across function bounds
BadBreak(ConValue),
/// Continue to the next iteration of a loop
Continue,
/// Underflowed the stack
StackUnderflow,
/// Exited the last scope
ScopeExit,
/// Type incompatibility
// TODO: store the type information in this error
TypeError,
/// In clause of For loop didn't yield a Range
NotIterable,
/// A name was not defined in scope before being used
NotDefined(String),
/// A name was defined but not initialized
NotInitialized(String),
/// A value was called, but is not callable
NotCallable(ConValue),
/// A function was called with the wrong number of arguments
ArgNumber { want: usize, got: usize },
}
impl std::error::Error for Error {}
impl std::fmt::Display for Error {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Error::Return(value) => write!(f, "return {value}"),
Error::Break(value) => write!(f, "break {value}"),
Error::BadBreak(value) => write!(f, "rogue break: {value}"),
Error::Continue => "continue".fmt(f),
Error::StackUnderflow => "Stack underflow".fmt(f),
Error::ScopeExit => "Exited the last scope. This is a logic bug.".fmt(f),
Error::TypeError => "Incompatible types".fmt(f),
Error::NotIterable => "`in` clause of `for` loop did not yield an iterable".fmt(f),
Error::NotDefined(value) => {
write!(f, "{value} not bound. Did you mean `let {value};`?")
}
Error::NotInitialized(value) => {
write!(f, "{value} bound, but not initialized")
}
Error::NotCallable(value) => {
write!(f, "{value} is not a function, and cannot be called")
}
Error::ArgNumber { want, got } => {
write!(f, "Expected {want} arguments, got {got}")
}
}
}
}
}