conlang: Variable binding and cleanup

ast: Separate concerns, and remove Walk
interpreter: implement variable binding
This commit is contained in:
John 2023-10-29 01:13:48 -05:00
parent 35d214c9f6
commit 8fe89e6297
5 changed files with 558 additions and 417 deletions

View File

@ -16,13 +16,13 @@ Fn = "fn" Identifier Block ; (* TODO: params, return value*)
(* # Expressions *)
(* expression *)
Expr = Assign ;
Block = '{' Expr '}' ;
Block = '{' Stmt* Expr? '}' ;
Group = '(' Expr? ')' ;
Primary = Item | Identifier | Literal
Primary = Identifier | Literal
| Block | Group | Branch ;
(* expression::math *)
Assign = Compare (AssignOp Compare)* ;
Assign = Identifier (AssignOp Assign) | Compare ;
Compare = Range (CompareOp Range )* ;
Range = Logic (RangeOp Logic )* ;
Logic = Bitwise (LogicOp Bitwise)* ;

View File

@ -18,8 +18,8 @@ pub mod preamble {
math::{self, operator},
},
literal,
statement::Stmt,
visitor::{Visitor, Walk},
statement::*,
visitor::Visitor,
Identifier, Program, Start,
};
}
@ -39,7 +39,7 @@ pub struct Program(pub Vec<statement::Stmt>);
/// An Identifier stores the name of an item
/// # Syntax
/// [`Identifier`]` := `[`IDENTIFIER`](crate::token::token_type::Type::Identifier)
#[derive(Clone, Debug, Hash)]
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct Identifier(pub String);
pub mod todo {
@ -148,7 +148,12 @@ pub mod statement {
//! [`Stmt`]` := `[`Let`](Stmt::Let)` | `[`Expr`](Stmt::Expr)
//! [`Let`](Stmt::Let)` := "let"` [`Identifier`] (`:` `Type`)? (`=` [`Expr`])? `;`
//! [`Expr`](Stmt::Expr)` := `[`Expr`] `;`
use super::{expression::Expr, Identifier};
use crate::token::Token;
use super::{
expression::{Block, Expr},
Identifier,
};
/// Contains a statement
/// # Syntax
@ -158,17 +163,31 @@ pub mod statement {
/// Contains a variable declaration
/// # Syntax
/// [`Let`](Stmt::Let) := `"let"` [`Identifier`] (`:` `Type`)? (`=` [`Expr`])? `;`
Let {
name: Identifier,
mutable: bool,
ty: Option<Identifier>,
init: Option<Expr>,
},
Let(Let),
/// Contains an expression statement
/// # Syntax
/// [`Expr`](Stmt::Expr) := [`Expr`] `;`
Expr(Expr),
}
/// Contains a variable declaration
/// # Syntax
/// [`Let`] := `let` [`Identifier`] (`:`) `Type`)? (`=` [`Expr`])? `;`
#[derive(Clone, Debug)]
pub struct Let {
pub name: Identifier,
pub mutable: bool,
pub ty: Option<Identifier>,
pub init: Option<Expr>,
}
#[derive(Clone, Debug)]
pub struct Fn {
pub name: Identifier,
pub args: (), // TODO: capture arguments
pub rety: Token,
pub body: Block,
}
}
pub mod expression {
@ -203,14 +222,14 @@ pub mod expression {
//! `[`Group`]` | `[`control::Flow`]
//!
//! See [control] and [math] for their respective production rules.
use super::*;
use super::{statement::Stmt, *};
/// Contains an expression
///
/// # Syntax
/// [`Expr`]` := `[`math::Operation`]
#[derive(Clone, Debug)]
pub struct Expr (pub math::Operation);
pub struct Expr(pub math::Operation);
/// A [Primary] Expression is the expression with the highest precedence (i.e. the deepest
/// derivation)
@ -234,7 +253,8 @@ pub mod expression {
/// [`Block`] := `'{'` [`Expr`] `'}'`
#[derive(Clone, Debug)]
pub struct Block {
pub expr: Box<Expr>,
pub statements: Vec<Stmt>,
pub expr: Option<Box<Expr>>,
}
/// Contains a Parenthesized Expression
@ -252,64 +272,83 @@ pub mod expression {
//! ## Precedence Order
//! Operator associativity is always left-to-right among members of the same group
//!
//! | # | Name | Operators | Associativity
//! |---|----------:|:----------------------------------------|---------------
// | | TODO: Try | `?` |
//! | 1 | Unary | [`*` `&` `-` `!`][3] | Right
//! | 2 | Factor | [`*` `/` `%`][4] | Left to Right
//! | 3 | Term | [`+` `-`][4] | Left to Right
//! | 4 | Shift | [`<<` `>>`][4] | Left to Right
//! | 5 | Bitwise | [`&` <code>&#124;</code>][4] | Left to Right
//! | 6 | Logic | [`&&` <code>&#124;&#124;</code> `^^`][4]| Left to Right
//! | 7 | Compare | [`<` `<=` `==` `!=` `>=` `>`][4] | Left to Right
#![doc = concat!( //| |
r" | 8 | Assign | [`*=`, `/=`, `%=`, `+=`, `-=`, ", //|
/* | | |*/ r"`&=`, <code>&#124;=</code>, ", //|
/* | | |*/ r"`^=`, `<<=`, `>>=`][4]", r"| Left to Right")]
//! | # | Name | Operators | Associativity
//! |---|-----------:|:----------------------------------------|---------------
// | | TODO: Try | `?` |
//! | 1 | [Unary][1]| [`*` `&` `-` `!`][4] | Right
//! | 2 | [Factor][2]| [`*` `/` `%`][5] | Left to Right
//! | 3 | [Term][2]| [`+` `-`][5] | Left to Right
//! | 4 | [Shift][2]| [`<<` `>>`][5] | Left to Right
//! | 5 |[Bitwise][2]| [`&` <code>&#124;</code>][4] | Left to Right
//! | 6 | [Logic][2]| [`&&` <code>&#124;&#124;</code> `^^`][5]| Left to Right
//! | 7 |[Compare][2]| [`<` `<=` `==` `!=` `>=` `>`][5] | Left to Right
#![doc = concat!( //| |
r" | 8 | [Assign][3]| [`*=`, `/=`, `%=`, `+=`, `-=`, ", //|
/* | | |*/ r"`&=`, <code>&#124;=</code>, ", //|
/* | | |*/ r"`^=`, `<<=`, `>>=`][6]", r"| Left to Right")]
//!
//! <!-- Note: '&#124;' == '|' /-->
//!
//! ## Syntax
//! All precedence levels other than [Unary][1] fold into [Binary][2]
//!
//! [`Assign`][2]` := `[`Compare`][2]` (`[`AssignOp`][4]` `[`Compare`][2]`)*` \
//! [`Compare`][2]` := `[`Logic`][2]` (`[`CompareOp`][4]` `[`Logic`][2]` )*` \
//! [`Logic`][2]` := `[`Bitwise`][2]` (`[`LogicOp`][4]` `[`Bitwise`][2]`)*` \
//! [`Bitwise`][2]` := `[`Shift`][2]` (`[`BitwiseOp`][4]` `[`Shift`][2]` )*` \
//! [`Shift`][2]` := `[`Term`][2]` (`[`ShiftOp`][4]` `[`Term`][2]` )*` \
//! [`Term`][2]` := `[`Factor`][2]` (`[`TermOp`][4]` `[`Factor`][2]` )*` \
//! [`Factor`][2]` := `[`Unary`][1]` (`[`FactorOp`][4]` `[`Unary`][1]` )*` \
//! [`Unary`][1]` := (`[`UnaryOp`][3]`)* `[`Primary`]
//! [`Assign`][3]` := `[`Compare`][2]` (`[`AssignOp`][6]` `[`Compare`][2]`)*` \
//! [`Compare`][2]` := `[`Logic`][2]` (`[`CompareOp`][5]` `[`Logic`][2]` )*` \
//! [`Logic`][2]` := `[`Bitwise`][2]` (`[`LogicOp`][5]` `[`Bitwise`][2]`)*` \
//! [`Bitwise`][2]` := `[`Shift`][2]` (`[`BitwiseOp`][5]` `[`Shift`][2]` )*` \
//! [`Shift`][2]` := `[`Term`][2]` (`[`ShiftOp`][5]` `[`Term`][2]` )*` \
//! [`Term`][2]` := `[`Factor`][2]` (`[`TermOp`][5]` `[`Factor`][2]` )*` \
//! [`Factor`][2]` := `[`Unary`][1]` (`[`FactorOp`][5]` `[`Unary`][1]` )*` \
//! [`Unary`][1]` := (`[`UnaryOp`][4]`)* `[`Primary`]
//!
//! [1]: Operation::Unary
//! [2]: Operation::Binary
//! [3]: operator::Unary
//! [4]: operator::Binary
//! [3]: Operation::Assign
//! [4]: operator::Unary
//! [5]: operator::Binary
//! [6]: operator::Assign
use super::*;
/// An Operation is a tree of [operands](Primary) and [operators](operator).
#[derive(Clone, Debug)]
pub enum Operation {
/// [`Assign`](Operation::Assign) :=
/// [`Identifier`] [`operator::Assign`] [`Operation`] | [`Operation`]
Assign(Assign),
/// [`Binary`](Operation::Binary) :=
/// [`Operation`] ([`operator::Binary`] [`Operation`])*
Binary {
first: Box<Self>,
other: Vec<(operator::Binary, Self)>,
},
/// [`Unary`](Operation::Unary) := ([`operator::Unary`])* [`Primary`]
Unary {
operators: Vec<operator::Unary>,
operand: Primary,
},
Binary(Binary),
/// [`Unary`](Operation::Unary) := ([`operator::Unary`])*
/// [`Primary`](Operation::Primary)
Unary(Unary),
/// [`Primary`](Operation::Primary) := [`expression::Primary`]
Primary(Primary),
}
impl Operation {
pub fn binary(first: Self, other: Vec<(operator::Binary, Self)>) -> Self {
Self::Binary { first: Box::new(first), other }
}
/// [`Assign`] := [`Identifier`] [`operator::Assign`] [`Operation`] | [`Operation`]
#[derive(Clone, Debug)]
pub struct Assign {
pub target: Identifier,
pub operator: operator::Assign,
pub init: Box<Operation>,
}
/// [`Binary`] := [`Operation`] ([`operator::Binary`] [`Operation`])*
#[derive(Clone, Debug)]
pub struct Binary {
pub first: Box<Operation>,
pub other: Vec<(operator::Binary, Operation)>,
}
/// [`Unary`] := ([`operator::Unary`])* [`Primary`](Operation::Primary)
#[derive(Clone, Debug)]
pub struct Unary {
pub operators: Vec<operator::Unary>,
pub operand: Box<Operation>,
}
pub mod operator {
//! # [Unary] and [Binary] operators
//! # [Unary], [Binary], and [Assign] operators
//!
//! An Operator represents the action taken during an [operation](super::Operation)
@ -351,13 +390,6 @@ pub mod expression {
/// ## Comparison operators
/// [`<`](Binary::Less), [`<=`](Binary::LessEq), [`==`](Binary::Equal),
/// [`!=`](Binary::NotEq), [`>=`](Binary::GreaterEq), [`>`](Binary::Greater),
/// ## Assignment operators
/// [`=`](Binary::Assign), [`+=`](Binary::AddAssign), [`-=`](Binary::SubAssign),
/// [`*=`](Binary::MulAssign), [`/=`](Binary::DivAssign), [`%=`](Binary::RemAssign),
/// [`&=`](Binary::BitAndAssign), [`|=`](Binary::BitOrAssign),
/// [`^=`](Binary::BitXorAssign) [`<<=`](Binary::ShlAssign),
/// [`>>=`](Binary::ShrAssign)
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Binary {
/// `*`: Multiplication
@ -402,6 +434,16 @@ pub mod expression {
GreaterEq,
/// `>`: Greater-than Comparison
Greater,
}
/// # Assignment operators
/// [`=`](Assign::Assign), [`+=`](Assign::AddAssign), [`-=`](Assign::SubAssign),
/// [`*=`](Assign::MulAssign), [`/=`](Assign::DivAssign), [`%=`](Assign::RemAssign),
/// [`&=`](Assign::BitAndAssign), [`|=`](Assign::BitOrAssign),
/// [`^=`](Assign::BitXorAssign) [`<<=`](Assign::ShlAssign),
/// [`>>=`](Assign::ShrAssign)
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Assign {
/// `=`: Assignment
Assign,
/// `+=`: Additive In-place Assignment
@ -611,182 +653,11 @@ pub mod visitor {
//! A [`Visitor`] visits every kind of node in the [Abstract Syntax Tree](super). Nodes,
//! conversely are [`Walkers`](Walk) for Visitors which return a [`Result<(), E>`](Result)
use super::{
expression::{
control::*,
math::{operator::*, *},
Block, *,
},
expression::{control::*, math::*, Block, *},
literal::*,
statement::Stmt,
statement::*,
*,
};
/// A [Walker](Walk) is a node in the AST, and calls [`Visitor::visit_*()`](Visitor) on all its
/// children
pub trait Walk<T: Visitor<R> + ?Sized, R> {
/// Traverses the children of this node in order, calling the appropriate [Visitor] function
fn walk(&self, visitor: &mut T) -> R;
}
mod walker {
use crate::ast::statement::Stmt;
use super::*;
macro leaf($($T:ty),*$(,)?) {$(
impl<T: Visitor<Result<(), E>> + ?Sized, E> Walk<T, Result<(), E>> for $T {
#[doc = concat!("A(n) [`", stringify!($T), "`] is a leaf node.")]
/// Calling this will do nothing.
fn walk(&self, _visitor: &mut T) -> Result<(), E> { Ok(()) }
}
)*}
leaf!(Binary, bool, char, Continue, Float, Identifier, str, u128, Unary);
impl<T: Visitor<Result<(), E>> + ?Sized, E> Walk<T, Result<(), E>> for While {
fn walk(&self, visitor: &mut T) -> Result<(), E> {
visitor.visit_expr(&self.cond)?;
visitor.visit_block(&self.body)?;
match &self.else_ {
Some(expr) => visitor.visit_else(expr),
None => Ok(()),
}
}
}
impl<T: Visitor<Result<(), E>> + ?Sized, E> Walk<T, Result<(), E>> for If {
fn walk(&self, visitor: &mut T) -> Result<(), E> {
visitor.visit_expr(&self.cond)?;
visitor.visit_block(&self.body)?;
match &self.else_ {
Some(expr) => visitor.visit_else(expr),
None => Ok(()),
}
}
}
impl<T: Visitor<Result<(), E>> + ?Sized, E> Walk<T, Result<(), E>> for For {
fn walk(&self, visitor: &mut T) -> Result<(), E> {
visitor.visit_identifier(&self.var)?;
visitor.visit_expr(&self.iter)?;
visitor.visit_block(&self.body)?;
match &self.else_ {
Some(expr) => visitor.visit_else(expr),
None => Ok(()),
}
}
}
impl<T: Visitor<Result<(), E>> + ?Sized, E> Walk<T, Result<(), E>> for Else {
fn walk(&self, visitor: &mut T) -> Result<(), E> {
visitor.visit_block(&self.block)
}
}
impl<T: Visitor<Result<(), E>> + ?Sized, E> Walk<T, Result<(), E>> for Return {
fn walk(&self, visitor: &mut T) -> Result<(), E> {
visitor.visit_expr(&self.expr)
}
}
impl<T: Visitor<Result<(), E>> + ?Sized, E> Walk<T, Result<(), E>> for Break {
fn walk(&self, visitor: &mut T) -> Result<(), E> {
visitor.visit_expr(&self.expr)
}
}
impl<T: Visitor<Result<(), E>> + ?Sized, E> Walk<T, Result<(), E>> for Start {
fn walk(&self, visitor: &mut T) -> Result<(), E> {
visitor.visit_program(&self.0)
}
}
impl<T: Visitor<Result<(), E>> + ?Sized, E> Walk<T, Result<(), E>> for Expr {
fn walk(&self, visitor: &mut T) -> Result<(), E> {
visitor.visit_operation(&self.0)
}
}
impl<T: Visitor<Result<(), E>> + ?Sized, E> Walk<T, Result<(), E>> for Group {
fn walk(&self, visitor: &mut T) -> Result<(), E> {
match self {
Group::Expr(expr) => visitor.visit_expr(expr),
Group::Empty => visitor.visit_empty(),
}
}
}
impl<T: Visitor<Result<(), E>> + ?Sized, E> Walk<T, Result<(), E>> for Block {
fn walk(&self, visitor: &mut T) -> Result<(), E> {
visitor.visit_expr(&self.expr)
}
}
impl<T: Visitor<Result<(), E>> + ?Sized, E> Walk<T, Result<(), E>> for Operation {
fn walk(&self, visitor: &mut T) -> Result<(), E> {
match self {
Operation::Binary { first, other } => {
visitor.visit_operation(first)?;
for (op, other) in other {
visitor.visit_binary_op(op)?;
visitor.visit_operation(other)?;
}
Ok(())
}
Operation::Unary { operators, operand } => {
for op in operators {
visitor.visit_unary_op(op)?;
}
visitor.visit_primary(operand)
}
}
}
}
impl<T: Visitor<Result<(), E>> + ?Sized, E> Walk<T, Result<(), E>> for Primary {
fn walk(&self, visitor: &mut T) -> Result<(), E> {
match self {
Primary::Identifier(i) => visitor.visit_identifier(i),
Primary::Literal(l) => visitor.visit_literal(l),
Primary::Block(b) => visitor.visit_block(b),
Primary::Group(g) => visitor.visit_group(g),
Primary::Branch(b) => visitor.visit_branch_expr(b),
}
}
}
impl<T: Visitor<Result<(), E>> + ?Sized, E> Walk<T, Result<(), E>> for Literal {
fn walk(&self, visitor: &mut T) -> Result<(), E> {
match self {
Literal::String(s) => visitor.visit_string_literal(s),
Literal::Char(c) => visitor.visit_char_literal(c),
Literal::Bool(b) => visitor.visit_bool_literal(b),
Literal::Float(f) => visitor.visit_float_literal(f),
Literal::Int(i) => visitor.visit_int_literal(i),
}
}
}
impl<T: Visitor<Result<(), E>> + ?Sized, E> Walk<T, Result<(), E>> for Flow {
fn walk(&self, visitor: &mut T) -> Result<(), E> {
match self {
Flow::While(w) => visitor.visit_while(w),
Flow::If(i) => visitor.visit_if(i),
Flow::For(f) => visitor.visit_for(f),
Flow::Continue(c) => visitor.visit_continue(c),
Flow::Return(r) => visitor.visit_return(r),
Flow::Break(b) => visitor.visit_break(b),
}
}
}
impl<T: Visitor<Result<(), E>> + ?Sized, E> Walk<T, Result<(), E>> for Stmt {
fn walk(&self, visitor: &mut T) -> Result<(), E> {
match self {
Stmt::Let { name, mutable: _, ty, init } => {
visitor.visit_identifier(name)?;
if let Some(ty) = ty {
visitor.visit_identifier(ty)?;
}
if let Some(init) = init {
visitor.visit_expr(init)?;
}
Ok(())
}
Stmt::Expr(e) => visitor.visit_expr(e),
}
}
}
impl<T: Visitor<Result<(), E>> + ?Sized, E> Walk<T, Result<(), E>> for Program {
fn walk(&self, visitor: &mut T) -> Result<(), E> {
for stmt in &self.0 {
visitor.visit_statement(stmt)?;
}
Ok(())
}
}
}
/// A Visitor traverses every kind of node in the [Abstract Syntax Tree](super)
pub trait Visitor<R> {
@ -798,7 +669,14 @@ pub mod visitor {
fn visit_program(&mut self, prog: &Program) -> R;
/// Visit a [Statement](Stmt)
fn visit_statement(&mut self, stmt: &Stmt) -> R;
fn visit_statement(&mut self, stmt: &Stmt) -> R {
match stmt {
Stmt::Let(stmt) => self.visit_let(stmt),
Stmt::Expr(expr) => self.visit_expr(expr),
}
}
/// Visit a [Let statement](Let)
fn visit_let(&mut self, stmt: &Let) -> R;
/// Visit an [Expression](Expr)
fn visit_expr(&mut self, expr: &Expr) -> R {
@ -806,9 +684,7 @@ pub mod visitor {
}
// Block expression
/// Visit a [Block] expression
fn visit_block(&mut self, expr: &Block) -> R {
self.visit_expr(&expr.expr)
}
fn visit_block(&mut self, block: &Block) -> R;
/// Visit a [Group] expression
fn visit_group(&mut self, group: &Group) -> R {
match group {
@ -819,9 +695,23 @@ pub mod visitor {
// Math expression
/// Visit an [Operation]
fn visit_operation(&mut self, expr: &Operation) -> R;
/// Visit a [Binary](Operation::Binary) [operator](operator::Binary)
fn visit_operation(&mut self, operation: &Operation) -> R {
match operation {
Operation::Assign(assign) => self.visit_assign(assign),
Operation::Binary(binary) => self.visit_binary(binary),
Operation::Unary(unary) => self.visit_unary(unary),
Operation::Primary(primary) => self.visit_primary(primary),
}
}
/// Visit an [Assignment](Assign) operation
fn visit_assign(&mut self, assign: &Assign) -> R;
/// Visit a [Binary] Operation
fn visit_binary(&mut self, binary: &Binary) -> R;
/// Visit a [Unary] Operation
fn visit_unary(&mut self, unary: &Unary) -> R;
// Math operators
fn visit_assign_op(&mut self, op: &operator::Assign) -> R;
/// Visit a [Binary](Operation::Binary) [operator](operator::Binary)
fn visit_binary_op(&mut self, op: &operator::Binary) -> R;
/// Visit a [Unary](Operation::Unary) [operator](operator::Unary)
fn visit_unary_op(&mut self, op: &operator::Unary) -> R;
@ -829,8 +719,8 @@ pub mod visitor {
/// Visit a [Primary] expression
///
/// [`Primary`]` := `[`Identifier`]` | `[`Literal`]` | `[`Block`]` | `[`Flow`]
fn visit_primary(&mut self, expr: &Primary) -> R {
match expr {
fn visit_primary(&mut self, primary: &Primary) -> R {
match primary {
Primary::Identifier(v) => self.visit_identifier(v),
Primary::Literal(v) => self.visit_literal(v),
Primary::Block(v) => self.visit_block(v),

View File

@ -1,5 +1,6 @@
//! Interprets an AST as a program
use self::scope::Environment;
use crate::ast::preamble::*;
use error::{Error, IResult, Reason};
use temp_type_impl::ConValue;
@ -12,9 +13,10 @@ pub mod temp_type_impl {
///
/// This is a hack to work around the fact that Conlang doesn't have a functioning type system
/// yet :(
#[derive(Clone, Debug)]
#[derive(Clone, Debug, Default)]
pub enum ConValue {
/// The empty/unit `()` type
#[default]
Empty,
/// An integer
Int(i128),
@ -57,6 +59,18 @@ pub mod temp_type_impl {
gt_eq: true, >=;
gt: false, >;
}
assign! {
add_assign: +;
bitand_assign: &;
bitor_assign: |;
bitxor_assign: ^;
div_assign: /;
mul_assign: *;
rem_assign: %;
shl_assign: <<;
shr_assign: >>;
sub_assign: -;
}
}
/// Templates comparison functions for [ConValue]
macro cmp ($($fn:ident: $empty:literal, $op:tt);*$(;)?) {$(
@ -73,6 +87,12 @@ pub mod temp_type_impl {
}
}
)*}
macro assign($( $fn: ident: $op: tt );*$(;)?) {$(
pub fn $fn(&mut self, other: Self) -> IResult<()> {
*self = (std::mem::take(self) $op other)?;
Ok(())
}
)*}
/// Implements [From] for an enum with 1-tuple variants
macro from ($($T:ty => $v:expr),*$(,)?) {
$(impl From<$T> for ConValue {
@ -197,6 +217,7 @@ pub mod temp_type_impl {
/// A work-in-progress tree walk interpreter for Conlang
#[derive(Clone, Debug, Default)]
pub struct Interpreter {
scope: Box<Environment>,
stack: Vec<ConValue>,
}
@ -230,6 +251,13 @@ impl Interpreter {
fn pop_two(&mut self) -> IResult<(ConValue, ConValue)> {
Ok((self.pop()?, self.pop()?))
}
fn resolve(&mut self, value: &Identifier) -> IResult<ConValue> {
self.scope
.get(value)
.cloned()
.ok_or_else(|| Error::with_reason(Reason::NotDefined(value.to_owned())))?
.ok_or_else(|| Error::with_reason(Reason::NotInitialized(value.to_owned())))
}
}
impl Visitor<IResult<()>> for Interpreter {
@ -242,10 +270,7 @@ impl Visitor<IResult<()>> for Interpreter {
fn visit_statement(&mut self, stmt: &Stmt) -> IResult<()> {
match stmt {
Stmt::Let { name, mutable, ty, init } => todo!(
"let{} {name:?}: {ty:?} = {init:?}",
if *mutable { " mut" } else { "" }
),
Stmt::Let(l) => self.visit_let(l),
Stmt::Expr(e) => {
self.visit_expr(e)?;
self.pop().map(drop)
@ -253,57 +278,124 @@ impl Visitor<IResult<()>> for Interpreter {
}
}
fn visit_operation(&mut self, expr: &math::Operation) -> IResult<()> {
use math::Operation;
// TODO: the indentation depth here is driving me insane.
// maybe refactor the ast to break binary and unary
// operations into their own nodes, and use
// Operation to unify them?
match expr {
Operation::Binary { first, other } => {
self.visit_operation(first)?;
for (op, other) in other {
match op {
operator::Binary::LogAnd => {
if self.peek()?.truthy()? {
self.pop()?;
self.visit_operation(other)?;
}
}
operator::Binary::LogOr => {
if !self.peek()?.truthy()? {
self.pop()?;
self.visit_operation(other)?;
}
}
operator::Binary::LogXor => {
let first = self.pop()?.truthy()?;
self.visit_operation(other)?;
let second = self.pop()?.truthy()?;
self.push(first ^ second);
}
_ => {
self.visit_operation(other)?;
self.visit_binary_op(op)?;
}
fn visit_let(&mut self, stmt: &Let) -> IResult<()> {
let Let { name, init, .. } = stmt;
if let Some(init) = init {
self.visit_expr(init)?;
let init = self.pop()?;
self.scope.insert(name, Some(init));
} else {
self.scope.insert(name, None);
}
Ok(())
}
fn visit_block(&mut self, block: &expression::Block) -> IResult<()> {
for stmt in &block.statements {
self.visit_statement(stmt)?;
}
if let Some(expr) = block.expr.as_ref() {
self.visit_expr(expr)
} else {
self.push(ConValue::Empty);
Ok(())
}
}
fn visit_assign(&mut self, assign: &math::Assign) -> IResult<()> {
use operator::Assign;
let math::Assign { target, operator, init } = assign;
self.visit_operation(init)?;
let init = self.pop()?;
let Some(resolved) = self.scope.get_mut(target) else {
Err(Error::with_reason(Reason::NotDefined(target.to_owned())))?
};
if let Assign::Assign = operator {
use std::mem::discriminant as variant;
// runtime typecheck
match resolved.as_mut() {
Some(value) if variant(value) == variant(&init) => {
*value = init;
}
None => *resolved = Some(init),
_ => Err(Error::with_reason(Reason::TypeError))?,
}
self.push(ConValue::Empty);
return Ok(());
}
let Some(target) = resolved.as_mut() else {
Err(Error::with_reason(Reason::NotInitialized(
target.to_owned(),
)))?
};
match operator {
Assign::AddAssign => target.add_assign(init)?,
Assign::SubAssign => target.sub_assign(init)?,
Assign::MulAssign => target.mul_assign(init)?,
Assign::DivAssign => target.div_assign(init)?,
Assign::RemAssign => target.rem_assign(init)?,
Assign::BitAndAssign => target.bitand_assign(init)?,
Assign::BitOrAssign => target.bitor_assign(init)?,
Assign::BitXorAssign => target.bitxor_assign(init)?,
Assign::ShlAssign => target.shl_assign(init)?,
Assign::ShrAssign => target.shr_assign(init)?,
_ => (),
}
self.push(ConValue::Empty);
Ok(())
}
fn visit_binary(&mut self, bin: &math::Binary) -> IResult<()> {
use math::Binary;
let Binary { first, other } = bin;
self.visit_operation(first)?;
for (op, other) in other {
match op {
operator::Binary::LogAnd => {
if self.peek()?.truthy()? {
self.pop()?;
self.visit_operation(other)?;
}
}
Ok(())
}
Operation::Unary { operators, operand } => {
self.visit_primary(operand)?;
for op in operators.iter().rev() {
self.visit_unary_op(op)?;
operator::Binary::LogOr => {
if !self.peek()?.truthy()? {
self.pop()?;
self.visit_operation(other)?;
}
}
operator::Binary::LogXor => {
let first = self.pop()?.truthy()?;
self.visit_operation(other)?;
let second = self.pop()?.truthy()?;
self.push(first ^ second);
}
_ => {
self.visit_operation(other)?;
self.visit_binary_op(op)?;
}
Ok(())
}
}
Ok(())
}
fn visit_unary(&mut self, unary: &math::Unary) -> IResult<()> {
let math::Unary { operand, operators } = unary;
self.visit_operation(operand)?;
for op in operators.iter().rev() {
self.visit_unary_op(op)?;
}
Ok(())
}
fn visit_assign_op(&mut self, _: &operator::Assign) -> IResult<()> {
unimplemented!("visit_assign_op is implemented in visit_operation")
}
fn visit_binary_op(&mut self, op: &operator::Binary) -> IResult<()> {
use operator::Binary;
let (second, first) = self.pop_two()?;
self.push(match op {
let out = match op {
Binary::Mul => first * second,
Binary::Div => first / second,
Binary::Rem => first % second,
@ -325,18 +417,8 @@ impl Visitor<IResult<()>> for Interpreter {
Binary::NotEq => first.neq(&second),
Binary::GreaterEq => first.gt_eq(&second),
Binary::Greater => first.gt(&second),
Binary::Assign => todo!("Assignment"),
Binary::AddAssign => todo!("Assignment"),
Binary::SubAssign => todo!("Assignment"),
Binary::MulAssign => todo!("Assignment"),
Binary::DivAssign => todo!("Assignment"),
Binary::RemAssign => todo!("Assignment"),
Binary::BitAndAssign => todo!("Assignment"),
Binary::BitOrAssign => todo!("Assignment"),
Binary::BitXorAssign => todo!("Assignment"),
Binary::ShlAssign => todo!("Assignment"),
Binary::ShrAssign => todo!("Assignment"),
}?);
}?;
self.push(out);
Ok(())
}
@ -364,12 +446,13 @@ impl Visitor<IResult<()>> for Interpreter {
self.visit_block(&expr.body)?;
} else if let Some(block) = &expr.else_ {
self.visit_else(block)?;
} else {
self.push(ConValue::Empty)
}
Ok(())
}
fn visit_while(&mut self, expr: &control::While) -> IResult<()> {
let mut broke = false;
while {
self.visit_expr(&expr.cond)?;
self.pop()?.truthy()?
@ -384,26 +467,28 @@ impl Visitor<IResult<()>> for Interpreter {
Reason::Continue => continue,
Reason::Break(value) => {
self.push(value);
broke = true;
break;
return Ok(());
}
r => Err(Error::with_reason(r))?,
}
}
if let (Some(r#else), false) = (&expr.else_, broke) {
if let Some(r#else) = &expr.else_ {
self.visit_else(r#else)?;
} else {
self.push(ConValue::Empty);
}
Ok(())
}
fn visit_for(&mut self, expr: &control::For) -> IResult<()> {
self.scope.enter();
self.visit_expr(&expr.iter)?;
let mut broke = false;
let bounds = match self.pop()? {
ConValue::RangeExc(a, b) | ConValue::RangeInc(a, b) => (a, b),
_ => Err(Error::with_reason(Reason::NotIterable))?,
};
for _ in bounds.0..=bounds.1 {
for loop_var in bounds.0..=bounds.1 {
self.scope.insert(&expr.var, Some(loop_var.into()));
let Err(out) = self.visit_block(&expr.body) else {
self.pop()?;
continue;
@ -412,15 +497,17 @@ impl Visitor<IResult<()>> for Interpreter {
Reason::Continue => continue,
Reason::Break(value) => {
self.push(value);
broke = true;
break;
return Ok(());
}
r => Err(Error::with_reason(r))?,
}
}
if let (Some(r#else), false) = (&expr.else_, broke) {
if let Some(r#else) = &expr.else_ {
self.visit_else(r#else)?;
} else {
self.push(ConValue::Empty)
}
self.scope.exit()?;
Ok(())
}
@ -447,7 +534,9 @@ impl Visitor<IResult<()>> for Interpreter {
}
fn visit_identifier(&mut self, ident: &Identifier) -> IResult<()> {
todo!("Identifier lookup and scoping rules: {ident:?}")
let value = self.resolve(ident)?;
self.push(value);
Ok(())
}
fn visit_string_literal(&mut self, string: &str) -> IResult<()> {
@ -480,8 +569,69 @@ impl Visitor<IResult<()>> for Interpreter {
}
}
pub mod scope {
//! Lexical and non-lexical scoping for variables
use super::{
error::{Error, IResult, Reason},
temp_type_impl::ConValue,
Identifier,
};
use std::collections::HashMap;
#[derive(Clone, Debug, Default)]
pub enum Variable {
#[default]
Uninit,
Init(ConValue),
}
/// Implements a nested lexical scope
#[derive(Clone, Debug, Default)]
pub struct Environment {
outer: Option<Box<Self>>,
vars: HashMap<Identifier, Option<ConValue>>,
}
impl Environment {
/// Enter a nested scope
pub fn enter(self: &mut Box<Self>) {
let outer = std::mem::take(self);
self.outer = Some(outer);
}
/// Exits the scope, destroying all local variables and
/// returning the outer scope, if there is one
pub fn exit(&mut self) -> IResult<()> {
if let Some(outer) = std::mem::take(&mut self.outer) {
*self = *outer;
Ok(())
} else {
Err(Error::with_reason(Reason::ScopeExit))
}
}
/// Resolves a variable mutably
pub fn get_mut(&mut self, id: &Identifier) -> Option<&mut Option<ConValue>> {
match self.vars.get_mut(id) {
Some(var) => Some(var),
None => self.outer.as_mut().and_then(|o| o.get_mut(id)),
}
}
/// Resolves a variable immutably
pub fn get(&self, id: &Identifier) -> Option<&Option<ConValue>> {
match self.vars.get(id) {
Some(var) => Some(var),
None => self.outer.as_ref().and_then(|o| o.get(id)),
}
}
pub fn insert(&mut self, id: &Identifier, value: Option<ConValue>) {
self.vars.insert(id.clone(), value);
}
}
}
pub mod error {
//! The [Error] type represents any error thrown by the [Interpreter](super::Interpreter)
use crate::ast::Identifier;
use super::temp_type_impl::ConValue;
pub type IResult<T> = Result<T, Error>;
@ -524,11 +674,17 @@ pub mod error {
Continue,
/// Underflowed the stack
StackUnderflow,
/// Exited the last scope
ScopeExit,
/// Type incompatibility
// TODO: store the type information in this error
TypeError,
/// In clause of For loop didn't yield a Range
NotIterable,
/// A name was not defined in scope before being used
NotDefined(Identifier),
/// A name was defined but not initialized
NotInitialized(Identifier),
}
impl std::error::Error for Error {}
@ -540,12 +696,19 @@ pub mod error {
impl std::fmt::Display for Reason {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Reason::Return(value) => write!(f, "return {value:?}"),
Reason::Break(value) => write!(f, "break {value:?}"),
Reason::Return(value) => write!(f, "return {value}"),
Reason::Break(value) => write!(f, "break {value}"),
Reason::Continue => "continue".fmt(f),
Reason::StackUnderflow => "Stack underflow".fmt(f),
Reason::TypeError => "Type error".fmt(f),
Reason::ScopeExit => "Exited the last scope. This is a logic bug.".fmt(f),
Reason::TypeError => "Incompatible types".fmt(f),
Reason::NotIterable => "`in` clause of `for` loop did not yield an iterable".fmt(f),
Reason::NotDefined(value) => {
write!(f, "{} not bound. Did you mean `let {};`?", value.0, value.0)
}
Reason::NotInitialized(value) => {
write!(f, "{} bound, but not initialized", value.0)
}
}
}
}

View File

@ -8,7 +8,7 @@ pub mod error {
use std::fmt::Display;
/// The reason for the [Error]
#[derive(Clone, Debug, Default, PartialEq, Eq)]
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq)]
pub enum Reason {
Expected(Type),
Unexpected(Type),
@ -101,7 +101,11 @@ pub mod error {
self.start.as_ref()
}
/// Gets the [Reason] for this error
pub fn reason(self, reason: Reason) -> Self {
pub fn reason(&self) -> Reason {
self.reason
}
/// Modifies the [Reason] of this error
pub fn with_reason(self, reason: Reason) -> Self {
Self { reason, ..self }
}
error_impl! {
@ -131,6 +135,7 @@ pub mod error {
pub struct Parser {
tokens: Vec<Token>,
panic_stack: Vec<usize>,
pub errors: Vec<Error>,
cursor: usize,
}
impl<'t> From<Lexer<'t>> for Parser {
@ -153,7 +158,7 @@ impl Parser {
///
/// [1]: Token
pub fn new(tokens: Vec<Token>) -> Self {
Self { tokens, panic_stack: vec![], cursor: 0 }
Self { tokens, panic_stack: vec![], errors: vec![], cursor: 0 }
}
/// Parses the [start of an AST](Start)
pub fn parse(&mut self) -> PResult<Start> {
@ -184,6 +189,10 @@ impl Parser {
self.consume_comments();
self
}
}
/// Panicking
#[allow(dead_code)]
impl Parser {
/// Records the current position on the panic stack
fn mark(&mut self) -> &mut Self {
self.panic_stack.push(self.cursor);
@ -204,11 +213,22 @@ impl Parser {
fn advance_until(&mut self, t: Type) -> PResult<&mut Self> {
while self.matches(t).is_err() {
self.check_eof()
.map_err(|e| e.reason(Expected(t)))?
.map_err(|e| e.with_reason(Expected(t)))?
.consume();
}
Ok(self)
}
/// Marks the current position, and unwinds the panic stack if `f` fails.
fn attempt<F, R>(&mut self, f: F) -> PResult<R>
where F: FnOnce(&mut Self) -> PResult<R> {
self.mark();
let out = f(self);
match out {
Ok(_) => self.unmark(),
Err(_) => self.unwind()?,
};
out
}
}
/// Helpers
impl Parser {
@ -241,22 +261,6 @@ impl Parser {
self.matches(t)?;
Ok(self.consume())
}
/// Parses anything wrapped in `lhs` and `rhs` delimiters.
fn delimited<F, R>(&mut self, lhs: Type, mid: F, rhs: Type) -> PResult<R>
where F: Fn(&mut Self) -> PResult<R> {
self.consume_type(lhs)?.mark();
let out = match mid(self) {
Ok(out) => out,
Err(e) => {
eprintln!("{e}");
// Jump back in time and try to re-parse from the next brace
self.unwind()?.advance_until(lhs)?.mark();
return self.delimited(lhs, mid, rhs);
}
};
self.consume_type(rhs)?.unmark();
Ok(out)
}
#[doc(hidden)]
fn todo_error(&mut self, l: u32, c: u32, s: &str) -> Error {
eprintln!("TODO: {s}:{l}:{c}");
@ -359,15 +363,7 @@ impl Parser {
fn stmt(&mut self) -> PResult<Stmt> {
let token = self.peek()?;
match token.ty() {
Type::Keyword(Keyword::Let) => Ok(Stmt::Let {
mutable: self.consume().keyword(Keyword::Mut).is_ok(),
name: self.identifier()?,
ty: self
.consume_type(Type::Colon)
.and_then(Self::identifier)
.ok(),
init: self.consume_type(Type::Eq).and_then(Self::expr).ok(),
}),
Type::Keyword(Keyword::Let) => self.let_stmt().map(Stmt::Let),
_ => {
let out = Stmt::Expr(self.expr()?);
self.consume_type(Type::Semi)?;
@ -375,6 +371,23 @@ impl Parser {
}
}
}
/// Parses a [Let] statement
fn let_stmt(&mut self) -> PResult<Let> {
let out = Let {
mutable: self.consume().keyword(Keyword::Mut).is_ok(),
name: self.identifier()?,
ty: self
.consume_type(Type::Colon)
.and_then(Self::identifier)
.ok(),
init: self.consume_type(Type::Eq).and_then(Self::expr).ok(),
};
self.consume_type(Type::Semi)?;
Ok(out)
}
// /// Parses a [Function] statement
// fn function_stmt(&mut self) -> PResult<Function> {
// }
}
/// Expressions
impl Parser {
@ -385,8 +398,23 @@ impl Parser {
}
/// Parses a [block expression](expression::Block)
fn block(&mut self) -> PResult<expression::Block> {
self.delimited(Type::LCurly, |p| p.expr(), Type::RCurly)
.map(|e| expression::Block { expr: Box::new(e) })
use expression::{Block, Expr};
let mut statements = vec![];
let mut expr: Option<Box<Expr>> = None;
self.consume_type(Type::LCurly)?;
// tHeRe Is No PlAcE iN yOuR gRaMmAr WhErE bOtH aN eXpReSsIoN aNd A sTaTeMeNt ArE eXpEcTeD
while self.consume_type(Type::RCurly).is_err() {
match self.expr() {
Ok(e) if self.consume_type(Type::Semi).is_ok() => statements.push(Stmt::Expr(e)),
Ok(e) => {
expr = Some(Box::new(e));
self.consume_type(Type::RCurly)?;
break;
}
Err(_) => statements.push(self.stmt()?),
}
}
Ok(Block { statements, expr })
}
/// Parses a [group expression](expression::Group)
fn group(&mut self) -> PResult<expression::Group> {
@ -440,20 +468,35 @@ impl Parser {
macro binary ($($f:ident = $a:ident, $b:ident);*$(;)?) {$(
#[doc = concat!("Parses a(n) [", stringify!($f), " operation](math::Operation::Binary) expression")]
fn $f (&mut self) -> PResult<math::Operation> {
let (first, mut others) = (self.$a()?, vec![]);
use math::{Operation, Binary};
let (first, mut other) = (self.$a()?, vec![]);
while let Ok(op) = self.$b() {
others.push((op, self.$a()?));
other.push((op, self.$a()?));
}
Ok(if others.is_empty() { first } else {
math::Operation::binary(first, others)
Ok(if other.is_empty() { first } else {
Operation::Binary(Binary { first: first.into(), other })
})
}
)*}
/// # [Arithmetic and Logical Subexpressions](math)
impl Parser {
fn assign(&mut self) -> PResult<math::Operation> {
use math::{Assign, Operation};
let next = self.compare()?;
let Ok(operator) = self.assign_op() else {
return Ok(next);
};
let Operation::Primary(expression::Primary::Identifier(target)) = next else {
return Ok(next);
};
Ok(Operation::Assign(Assign {
target,
operator,
init: self.assign()?.into(),
}))
}
binary! {
// name operands operators
assign = compare, assign_op;
compare = range, compare_op;
range = logic, range_op;
logic = bitwise, logic_op;
@ -464,11 +507,22 @@ impl Parser {
}
/// Parses a [unary operation](math::Operation::Unary) expression
fn unary(&mut self) -> PResult<math::Operation> {
use math::{Operation, Unary};
let mut operators = vec![];
while let Ok(op) = self.unary_op() {
operators.push(op)
}
Ok(math::Operation::Unary { operators, operand: self.primary()? })
if operators.is_empty() {
return self.primary_operation();
}
Ok(Operation::Unary(Unary {
operators,
operand: self.primary_operation()?.into(),
}))
}
/// Parses a [primary operation](math::Operation::Primary) expression
fn primary_operation(&mut self) -> PResult<math::Operation> {
Ok(math::Operation::Primary(self.primary()?))
}
}
macro operator_impl ($($(#[$m:meta])* $f:ident : {$($type:pat => $op:ident),*$(,)?})*) {
@ -528,20 +582,27 @@ impl Parser {
Type::GtEq => GreaterEq,
Type::Gt => Greater,
}
/// Parses an [assign operator](operator)
assign_op: {
Type::Eq => Assign,
Type::PlusEq => AddAssign,
Type::MinusEq => SubAssign,
Type::StarEq => MulAssign,
Type::SlashEq => DivAssign,
Type::RemEq => RemAssign,
Type::AmpEq => BitAndAssign,
Type::BarEq => BitOrAssign,
Type::XorEq => BitXorAssign,
Type::LtLtEq => ShlAssign,
Type::GtGtEq => ShrAssign,
}
}
/// Parses an [assign operator](operator::Assign)
fn assign_op(&mut self) -> PResult<operator::Assign> {
use operator::Assign;
let token = self.peek()?;
let out = Ok(match token.ty() {
Type::Eq => Assign::Assign,
Type::PlusEq => Assign::AddAssign,
Type::MinusEq => Assign::SubAssign,
Type::StarEq => Assign::MulAssign,
Type::SlashEq => Assign::DivAssign,
Type::RemEq => Assign::RemAssign,
Type::AmpEq => Assign::BitAndAssign,
Type::BarEq => Assign::BitOrAssign,
Type::XorEq => Assign::BitXorAssign,
Type::LtLtEq => Assign::ShlAssign,
Type::GtGtEq => Assign::ShrAssign,
_ => Err(Error::not_operator().token(token.clone()))?,
});
self.consume();
out
}
/// Parses a [unary operator](operator::Unary)
fn unary_op(&mut self) -> PResult<operator::Unary> {
@ -578,7 +639,7 @@ impl Parser {
Type::Keyword(Continue) => self.parse_continue().map(Flow::Continue),
e => Err(Error::unexpected(e).token(token.clone()))?,
}
.map_err(|e| e.reason(IncompleteBranch))
.map_err(|e| e.with_reason(IncompleteBranch))
}
/// Parses an [if](control::If) expression
fn parse_if(&mut self) -> PResult<control::If> {

View File

@ -13,10 +13,10 @@ pub trait PrettyPrintable {
}
impl PrettyPrintable for Start {
fn print(&self) {
let _ = self.walk(&mut Printer::default());
let _ = Printer::default().visit(self);
}
fn write(&self, into: impl Write) -> IOResult<()> {
self.walk(&mut Printer::from(into))
Printer::from(into).visit(self)
}
}
@ -70,47 +70,75 @@ macro visit_operator($self:ident.$op:expr) {
impl<W: Write> Visitor<IOResult<()>> for Printer<W> {
fn visit_program(&mut self, prog: &Program) -> IOResult<()> {
// delegate to the walker
prog.walk(self)
for stmt in &prog.0 {
self.visit_statement(stmt)?;
}
Ok(())
}
fn visit_statement(&mut self, stmt: &Stmt) -> IOResult<()> {
match stmt {
Stmt::Let { name, mutable, ty, init } => {
self.put("let")?.space()?;
if *mutable {
self.put("mut")?.space()?;
}
self.visit_identifier(name)?;
if let Some(ty) = ty {
self.put(':')?.space()?.visit_identifier(ty)?;
}
if let Some(init) = init {
self.space()?.put('=')?.space()?.visit_expr(init)?;
}
},
Stmt::Let(stmt) => self.visit_let(stmt)?,
Stmt::Expr(e) => {
self.visit_expr(e)?;
},
self.put(';').map(drop)?
}
}
self.put(';')?.newline().map(drop)
self.newline().map(drop)
}
fn visit_operation(&mut self, expr: &math::Operation) -> IOResult<()> {
use math::Operation;
match expr {
Operation::Binary { first, other } => {
self.put('(')?.visit_operation(first)?;
for (op, other) in other {
self.visit_binary_op(op)?;
self.visit_operation(other)?;
}
self.put(')').map(drop)
}
Operation::Unary { operators, operand } => {
for op in operators {
self.visit_unary_op(op)?;
}
self.visit_primary(operand)
}
fn visit_let(&mut self, stmt: &Let) -> IOResult<()> {
let Let { name, mutable, ty, init } = stmt;
self.put("let")?.space()?;
if *mutable {
self.put("mut")?.space()?;
}
self.visit_identifier(name)?;
if let Some(ty) = ty {
self.put(':')?.space()?.visit_identifier(ty)?;
}
if let Some(init) = init {
self.space()?.put('=')?.space()?.visit_expr(init)?;
}
self.put(';').map(drop)
}
fn visit_assign(&mut self, assign: &math::Assign) -> IOResult<()> {
let math::Assign { target, operator, init } = assign;
self.visit_identifier(target)?;
self.visit_assign_op(operator)?;
self.visit_operation(init)
}
fn visit_binary(&mut self, binary: &math::Binary) -> IOResult<()> {
let math::Binary { first, other } = binary;
self.put('(')?.visit_operation(first)?;
for (op, other) in other {
self.visit_binary_op(op)?;
self.visit_operation(other)?;
}
self.put(')').map(drop)
}
fn visit_unary(&mut self, unary: &math::Unary) -> IOResult<()> {
let math::Unary { operators, operand } = unary;
for op in operators {
self.visit_unary_op(op)?;
}
self.visit_operation(operand)
}
fn visit_assign_op(&mut self, op: &operator::Assign) -> IOResult<()> {
use operator::Assign;
visit_operator!(self.match op {
Assign::Assign => "=",
Assign::AddAssign => "+=",
Assign::SubAssign => "-=",
Assign::MulAssign => "*=",
Assign::DivAssign => "/=",
Assign::RemAssign => "%=",
Assign::BitAndAssign => "&=",
Assign::BitOrAssign => "|=",
Assign::BitXorAssign => "^=",
Assign::ShlAssign => "<<=",
Assign::ShrAssign => ">>=",
})
}
fn visit_binary_op(&mut self, op: &operator::Binary) -> IOResult<()> {
use operator::Binary;
@ -136,17 +164,6 @@ impl<W: Write> Visitor<IOResult<()>> for Printer<W> {
Binary::NotEq => "!=",
Binary::GreaterEq => ">=",
Binary::Greater => ">",
Binary::Assign => "=",
Binary::AddAssign => "+=",
Binary::SubAssign => "-=",
Binary::MulAssign => "*=",
Binary::DivAssign => "/=",
Binary::RemAssign => "%=",
Binary::BitAndAssign => "&=",
Binary::BitOrAssign => "|=",
Binary::BitXorAssign => "^=",
Binary::ShlAssign => "<<=",
Binary::ShrAssign => ">>=",
})
}
fn visit_unary_op(&mut self, op: &operator::Unary) -> IOResult<()> {
@ -223,18 +240,28 @@ impl<W: Write> Visitor<IOResult<()>> for Printer<W> {
self.put(int).map(drop)
}
fn visit_empty(&mut self) -> IOResult<()> {
self.put("").map(drop)
self.put("()").map(drop)
}
fn visit_block(&mut self, expr: &expression::Block) -> IOResult<()> {
fn visit_block(&mut self, block: &expression::Block) -> IOResult<()> {
self.put('{')?.indent().newline()?;
expr.walk(self)?;
for stmt in &block.statements {
self.visit_statement(stmt)?;
}
for expr in &block.expr {
self.visit_expr(expr)?;
}
self.dedent().newline()?.put('}').map(drop)
}
fn visit_group(&mut self, expr: &expression::Group) -> IOResult<()> {
self.put('(')?.space()?;
expr.walk(self)?;
self.space()?.put(')').map(drop)
match expr {
expression::Group::Expr(expr) => {
self.put('(')?.space()?;
self.visit_expr(expr)?;
self.space()?.put(')').map(drop)
}
expression::Group::Empty => self.visit_empty(),
}
}
}