//! Interprets an AST as a program use crate::ast::preamble::*; use env::Environment; use error::{Error, IResult}; use temp_type_impl::ConValue; /// Callable types can be called from within a Conlang program pub trait Callable: std::fmt::Debug { /// Calls this [Callable] in the provided [Environment], with [ConValue] args \ /// The Callable is responsible for checking the argument count and validating types fn call(&self, interpreter: &mut Environment, args: &[ConValue]) -> IResult; /// Returns the common name of this identifier. fn name(&self) -> &str; } /// [BuiltIn]s are [Callable]s with bespoke definitions pub trait BuiltIn: std::fmt::Debug + Callable {} pub mod temp_type_impl { //! Temporary implementations of Conlang values //! //! The most permanent fix is a temporary one. use super::{ error::{Error, IResult}, function::Function, BuiltIn, Callable, Environment, }; use std::ops::*; /// A Conlang value /// /// This is a hack to work around the fact that Conlang doesn't /// have a functioning type system yet :( #[derive(Clone, Debug, Default)] pub enum ConValue { /// The empty/unit `()` type #[default] Empty, /// An integer Int(i128), /// A boolean Bool(bool), /// A unicode character Char(char), /// A string String(String), /// A tuple Tuple(Vec), /// An exclusive range RangeExc(i128, i128), /// An inclusive range RangeInc(i128, i128), /// A callable thing Function(Function), /// A built-in function BuiltIn(&'static dyn BuiltIn), } impl ConValue { /// Gets whether the current value is true or false pub fn truthy(&self) -> IResult { match self { ConValue::Bool(v) => Ok(*v), _ => Err(Error::TypeError)?, } } pub fn range_exc(self, other: Self) -> IResult { let (Self::Int(a), Self::Int(b)) = (self, other) else { Err(Error::TypeError)? }; Ok(Self::RangeExc(a, b.saturating_sub(1))) } pub fn range_inc(self, other: Self) -> IResult { let (Self::Int(a), Self::Int(b)) = (self, other) else { Err(Error::TypeError)? }; Ok(Self::RangeInc(a, b)) } cmp! { lt: false, <; lt_eq: true, <=; eq: true, ==; neq: false, !=; gt_eq: true, >=; gt: false, >; } assign! { add_assign: +; bitand_assign: &; bitor_assign: |; bitxor_assign: ^; div_assign: /; mul_assign: *; rem_assign: %; shl_assign: <<; shr_assign: >>; sub_assign: -; } } impl Callable for ConValue { fn name(&self) -> &str { match self { ConValue::Function(func) => func.name(), ConValue::BuiltIn(func) => func.name(), _ => "", } } fn call(&self, interpreter: &mut Environment, args: &[ConValue]) -> IResult { match self { Self::Function(func) => func.call(interpreter, args), Self::BuiltIn(func) => func.call(interpreter, args), _ => Err(Error::NotCallable(self.clone())), } } } /// Templates comparison functions for [ConValue] macro cmp ($($fn:ident: $empty:literal, $op:tt);*$(;)?) {$( /// TODO: Remove when functions are implemented: /// Desugar into function calls pub fn $fn(&self, other: &Self) -> IResult { match (self, other) { (Self::Empty, Self::Empty) => Ok(Self::Bool($empty)), (Self::Int(a), Self::Int(b)) => Ok(Self::Bool(a $op b)), (Self::Bool(a), Self::Bool(b)) => Ok(Self::Bool(a $op b)), (Self::Char(a), Self::Char(b)) => Ok(Self::Bool(a $op b)), (Self::String(a), Self::String(b)) => Ok(Self::Bool(a $op b)), _ => Err(Error::TypeError) } } )*} macro assign($( $fn: ident: $op: tt );*$(;)?) {$( pub fn $fn(&mut self, other: Self) -> IResult<()> { *self = (std::mem::take(self) $op other)?; Ok(()) } )*} /// Implements [From] for an enum with 1-tuple variants macro from ($($T:ty => $v:expr),*$(,)?) { $(impl From<$T> for ConValue { fn from(value: $T) -> Self { $v(value.into()) } })* } from! { i128 => ConValue::Int, bool => ConValue::Bool, char => ConValue::Char, &str => ConValue::String, String => ConValue::String, Function => ConValue::Function, Vec => ConValue::Tuple, } impl From<()> for ConValue { fn from(_: ()) -> Self { Self::Empty } } impl From<&[ConValue]> for ConValue { fn from(value: &[ConValue]) -> Self { match value.len() { 0 => Self::Empty, 1 => value[0].clone(), _ => Self::Tuple(value.into()), } } } /// Implements binary [std::ops] traits for [ConValue] /// /// TODO: Desugar operators into function calls macro ops($($trait:ty: $fn:ident = [$($match:tt)*])*) { $(impl $trait for ConValue { type Output = IResult; /// TODO: Desugar operators into function calls fn $fn(self, rhs: Self) -> Self::Output {Ok(match (self, rhs) {$($match)*})} })* } ops! { Add: add = [ (ConValue::Empty, ConValue::Empty) => ConValue::Empty, (ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a + b), (ConValue::String(a), ConValue::String(b)) => ConValue::String(a + &b), _ => Err(Error::TypeError)? ] BitAnd: bitand = [ (ConValue::Empty, ConValue::Empty) => ConValue::Empty, (ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a & b), (ConValue::Bool(a), ConValue::Bool(b)) => ConValue::Bool(a & b), _ => Err(Error::TypeError)? ] BitOr: bitor = [ (ConValue::Empty, ConValue::Empty) => ConValue::Empty, (ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a | b), (ConValue::Bool(a), ConValue::Bool(b)) => ConValue::Bool(a | b), _ => Err(Error::TypeError)? ] BitXor: bitxor = [ (ConValue::Empty, ConValue::Empty) => ConValue::Empty, (ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a ^ b), (ConValue::Bool(a), ConValue::Bool(b)) => ConValue::Bool(a ^ b), _ => Err(Error::TypeError)? ] Div: div = [ (ConValue::Empty, ConValue::Empty) => ConValue::Empty, (ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a / b), _ => Err(Error::TypeError)? ] Mul: mul = [ (ConValue::Empty, ConValue::Empty) => ConValue::Empty, (ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a * b), _ => Err(Error::TypeError)? ] Rem: rem = [ (ConValue::Empty, ConValue::Empty) => ConValue::Empty, (ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a % b), _ => Err(Error::TypeError)? ] Shl: shl = [ (ConValue::Empty, ConValue::Empty) => ConValue::Empty, (ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a << b), _ => Err(Error::TypeError)? ] Shr: shr = [ (ConValue::Empty, ConValue::Empty) => ConValue::Empty, (ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a >> b), _ => Err(Error::TypeError)? ] Sub: sub = [ (ConValue::Empty, ConValue::Empty) => ConValue::Empty, (ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a - b), _ => Err(Error::TypeError)? ] } impl Neg for ConValue { type Output = IResult; fn neg(self) -> Self::Output { Ok(match self { ConValue::Empty => ConValue::Empty, ConValue::Int(v) => ConValue::Int(-v), _ => Err(Error::TypeError)?, }) } } impl Not for ConValue { type Output = IResult; fn not(self) -> Self::Output { Ok(match self { ConValue::Empty => ConValue::Empty, ConValue::Int(v) => ConValue::Int(!v), ConValue::Bool(v) => ConValue::Bool(!v), _ => Err(Error::TypeError)?, }) } } impl std::fmt::Display for ConValue { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { match self { ConValue::Empty => "Empty".fmt(f), ConValue::Int(v) => v.fmt(f), ConValue::Bool(v) => v.fmt(f), ConValue::Char(v) => v.fmt(f), ConValue::String(v) => v.fmt(f), ConValue::RangeExc(a, b) => write!(f, "{a}..{}", b + 1), ConValue::RangeInc(a, b) => write!(f, "{a}..={b}"), ConValue::Tuple(tuple) => { '('.fmt(f)?; for (idx, element) in tuple.iter().enumerate() { if idx > 0 { ", ".fmt(f)? } element.fmt(f)? } ')'.fmt(f) } ConValue::Function(func) => { write!(f, "fn {}", func.name()) } ConValue::BuiltIn(func) => { write!(f, "internal fn {}", func.name()) } } } } } /// A work-in-progress tree walk interpreter for Conlang pub trait Interpret { /// Interprets this thing in the given [`Environment`]. /// /// Everything returns a value!™ fn interpret(&self, env: &mut Environment) -> IResult; } impl Interpret for Start { fn interpret(&self, env: &mut Environment) -> IResult { self.0.interpret(env) } } impl Interpret for Program { fn interpret(&self, env: &mut Environment) -> IResult { let mut out = ConValue::Empty; for stmt in &self.0 { out = stmt.interpret(env)?; } Ok(out) } } impl Interpret for Stmt { fn interpret(&self, env: &mut Environment) -> IResult { match self { Stmt::Let(l) => l.interpret(env), Stmt::Fn(f) => f.interpret(env), Stmt::Expr(e) => e.interpret(env), } } } impl Interpret for Let { fn interpret(&self, env: &mut Environment) -> IResult { let Let { name: Name { symbol: Identifier { name, .. }, .. }, init, .. } = self; if let Some(init) = init { let init = init.interpret(env)?; env.insert(name, Some(init)); } else { env.insert(name, None); } Ok(ConValue::Empty) } } impl Interpret for FnDecl { fn interpret(&self, env: &mut Environment) -> IResult { // register the function in the current environment env.insert_fn(self); Ok(ConValue::Empty) } } impl Interpret for Expr { fn interpret(&self, env: &mut Environment) -> IResult { self.0.interpret(env) } } impl Interpret for Operation { fn interpret(&self, env: &mut Environment) -> IResult { match self { Operation::Assign(op) => op.interpret(env), Operation::Binary(op) => op.interpret(env), Operation::Unary(op) => op.interpret(env), Operation::Call(op) => op.interpret(env), } } } impl Interpret for Assign { fn interpret(&self, env: &mut Environment) -> IResult { use operator::Assign; let math::Assign { target: Identifier { name, .. }, operator, init } = self; let init = init.interpret(env)?; let target = env.get_mut(name)?; if let Assign::Assign = operator { use std::mem::discriminant as variant; // runtime typecheck match target { Some(value) if variant(value) == variant(&init) => { *value = init; } value @ None => *value = Some(init), _ => Err(Error::TypeError)?, } return Ok(ConValue::Empty); } let Some(target) = target else { return Err(Error::NotInitialized(name.into())); }; match operator { Assign::AddAssign => target.add_assign(init)?, Assign::SubAssign => target.sub_assign(init)?, Assign::MulAssign => target.mul_assign(init)?, Assign::DivAssign => target.div_assign(init)?, Assign::RemAssign => target.rem_assign(init)?, Assign::BitAndAssign => target.bitand_assign(init)?, Assign::BitOrAssign => target.bitor_assign(init)?, Assign::BitXorAssign => target.bitxor_assign(init)?, Assign::ShlAssign => target.shl_assign(init)?, Assign::ShrAssign => target.shr_assign(init)?, _ => (), } Ok(ConValue::Empty) } } impl Interpret for Binary { fn interpret(&self, env: &mut Environment) -> IResult { let Binary { first, other } = self; let mut first = first.interpret(env)?; for (op, other) in other { first = match op { operator::Binary::LogAnd => { if first.truthy()? { other.interpret(env) } else { return Ok(first); // Short circuiting } } operator::Binary::LogOr => { if !first.truthy()? { other.interpret(env) } else { return Ok(first); // Short circuiting } } operator::Binary::LogXor => { // TODO: It should be possible to assemble better error information from this let (lhs, rhs) = (first.truthy()?, other.interpret(env)?.truthy()?); Ok(ConValue::Bool(lhs ^ rhs)) } // TODO: For all overloadable operators, transmute into function call operator::Binary::Mul => first * other.interpret(env)?, operator::Binary::Div => first / other.interpret(env)?, operator::Binary::Rem => first % other.interpret(env)?, operator::Binary::Add => first + other.interpret(env)?, operator::Binary::Sub => first - other.interpret(env)?, operator::Binary::Lsh => first << other.interpret(env)?, operator::Binary::Rsh => first >> other.interpret(env)?, operator::Binary::BitAnd => first & other.interpret(env)?, operator::Binary::BitOr => first | other.interpret(env)?, operator::Binary::BitXor => first ^ other.interpret(env)?, operator::Binary::RangeExc => first.range_exc(other.interpret(env)?), operator::Binary::RangeInc => first.range_inc(other.interpret(env)?), operator::Binary::Less => first.lt(&other.interpret(env)?), operator::Binary::LessEq => first.lt_eq(&other.interpret(env)?), operator::Binary::Equal => first.eq(&other.interpret(env)?), operator::Binary::NotEq => first.neq(&other.interpret(env)?), operator::Binary::GreaterEq => first.gt_eq(&other.interpret(env)?), operator::Binary::Greater => first.gt(&other.interpret(env)?), }?; } Ok(first) } } impl Interpret for Unary { fn interpret(&self, env: &mut Environment) -> IResult { let Unary { operand, operators } = self; let mut operand = operand.interpret(env)?; for op in operators.iter().rev() { operand = match op { operator::Unary::RefRef => todo!(), operator::Unary::Ref => todo!(), operator::Unary::Deref => todo!(), operator::Unary::Neg => (-operand)?, operator::Unary::Not => (!operand)?, operator::Unary::At => todo!(), operator::Unary::Hash => { println!("{operand}"); operand } operator::Unary::Tilde => todo!(), }; } Ok(operand) } } impl Interpret for Call { fn interpret(&self, env: &mut Environment) -> IResult { match self { Call::FnCall(fncall) => fncall.interpret(env), Call::Primary(primary) => primary.interpret(env), } } } impl Interpret for FnCall { fn interpret(&self, env: &mut Environment) -> IResult { // evaluate the callee let mut callee = self.callee.interpret(env)?; for args in &self.args { let ConValue::Tuple(args) = args.interpret(env)? else { Err(Error::TypeError)? }; callee = callee.call(env, &args)?; } Ok(callee) } } impl Interpret for Primary { fn interpret(&self, env: &mut Environment) -> IResult { match self { Primary::Identifier(prim) => prim.interpret(env), Primary::Literal(prim) => prim.interpret(env), Primary::Block(prim) => prim.interpret(env), Primary::Group(prim) => prim.interpret(env), Primary::Branch(prim) => prim.interpret(env), } } } impl Interpret for Identifier { fn interpret(&self, env: &mut Environment) -> IResult { env.get(&self.name).cloned() } } impl Interpret for Literal { fn interpret(&self, _env: &mut Environment) -> IResult { Ok(match self { Literal::String(value) => ConValue::from(value.as_str()), Literal::Char(value) => ConValue::Char(*value), Literal::Bool(value) => ConValue::Bool(*value), Literal::Float(value) => todo!("Float values in interpreter: {value:?}"), Literal::Int(value) => ConValue::Int(*value as _), }) } } impl Interpret for Block { fn interpret(&self, env: &mut Environment) -> IResult { let mut env = env.frame("block"); // TODO: this could TOTALLY be done with a binary operator. for stmt in &self.statements { stmt.interpret(&mut env)?; } if let Some(expr) = self.expr.as_ref() { expr.interpret(&mut env) } else { Ok(ConValue::Empty) } } } impl Interpret for Group { fn interpret(&self, env: &mut Environment) -> IResult { match self { Group::Tuple(tuple) => tuple.interpret(env), Group::Single(value) => value.interpret(env), Group::Empty => Ok(ConValue::Empty), } } } impl Interpret for Tuple { fn interpret(&self, env: &mut Environment) -> IResult { Ok(ConValue::Tuple(self.elements.iter().try_fold( vec![], |mut out, element| { out.push(element.interpret(env)?); Ok(out) }, )?)) } } impl Interpret for Flow { fn interpret(&self, env: &mut Environment) -> IResult { match self { Flow::While(flow) => flow.interpret(env), Flow::If(flow) => flow.interpret(env), Flow::For(flow) => flow.interpret(env), Flow::Continue(flow) => flow.interpret(env), Flow::Return(flow) => flow.interpret(env), Flow::Break(flow) => flow.interpret(env), } } } impl Interpret for While { fn interpret(&self, env: &mut Environment) -> IResult { while self.cond.interpret(env)?.truthy()? { match self.body.interpret(env) { Err(Error::Break(value)) => return Ok(value), Err(Error::Continue) => continue, e => e?, }; } if let Some(other) = &self.else_ { other.interpret(env) } else { Ok(ConValue::Empty) } } } impl Interpret for Else { fn interpret(&self, env: &mut Environment) -> IResult { self.expr.interpret(env) } } impl Interpret for If { fn interpret(&self, env: &mut Environment) -> IResult { if self.cond.interpret(env)?.truthy()? { self.body.interpret(env) } else if let Some(other) = &self.else_ { other.interpret(env) } else { Ok(ConValue::Empty) } } } impl Interpret for For { fn interpret(&self, env: &mut Environment) -> IResult { let bounds = match self.iter.interpret(env)? { ConValue::RangeExc(a, b) => a..=b, ConValue::RangeInc(a, b) => a..=b, _ => Err(Error::TypeError)?, }; let mut env = env.frame("loop variable"); for loop_var in bounds { env.insert(&self.var.name, Some(loop_var.into())); match self.body.interpret(&mut env) { Err(Error::Break(value)) => return Ok(value), Err(Error::Continue) => continue, result => result?, }; } if let Some(other) = &self.else_ { other.interpret(&mut env) } else { Ok(ConValue::Empty) } } } impl Interpret for Continue { fn interpret(&self, _env: &mut Environment) -> IResult { Err(Error::Continue) } } impl Interpret for Return { fn interpret(&self, env: &mut Environment) -> IResult { Err(Error::Return(self.expr.interpret(env)?)) } } impl Interpret for Break { fn interpret(&self, env: &mut Environment) -> IResult { Err(Error::Break(self.expr.interpret(env)?)) } } pub mod function { //! Represents a block of code which lives inside the Interpreter use super::{Callable, ConValue, Environment, Error, FnDecl, IResult, Identifier, Interpret}; use crate::ast::preamble::Name; /// Represents a block of code which persists inside the Interpreter #[derive(Clone, Debug)] pub struct Function { /// Stores the contents of the function declaration decl: Box, // /// Stores the enclosing scope of the function // env: Box, } impl Function { pub fn new(decl: &FnDecl) -> Self { Self { decl: decl.clone().into() } } } impl Callable for Function { fn name(&self) -> &str { &self.decl.name.symbol.name } fn call(&self, env: &mut Environment, args: &[ConValue]) -> IResult { // Check arg mapping if args.len() != self.decl.args.len() { return Err(Error::ArgNumber { want: self.decl.args.len(), got: args.len() }); } // TODO: Isolate cross-function scopes! // let mut env = self.env.clone(); let mut frame = env.frame("fn args"); for (Name { symbol: Identifier { name, .. }, .. }, value) in self.decl.args.iter().zip(args) { frame.insert(name, Some(value.clone())); } match self.decl.body.interpret(&mut frame) { Err(Error::Return(value)) => Ok(value), Err(Error::Break(value)) => Err(Error::BadBreak(value)), result => result, } } } } pub mod builtin { //! Implementations of built-in functions mod builtin_imports { pub use crate::interpreter::{ env::Environment, error::IResult, temp_type_impl::ConValue, BuiltIn, Callable, }; } use super::BuiltIn; /// Builtins to load when a new interpreter is created pub const DEFAULT_BUILTINS: &[&dyn BuiltIn] = &[&print::Print, &dbg::Dbg, &dump::Dump]; mod print { //! Implements the unstable `print(...)` builtin use super::builtin_imports::*; /// Implements the `print(...)` builtin #[derive(Clone, Debug)] pub struct Print; impl BuiltIn for Print {} #[rustfmt::skip] impl Callable for Print { fn name(&self) -> &'static str { "print" } fn call(&self, _inter: &mut Environment, args: &[ConValue]) -> IResult { for arg in args { print!("{arg}") } println!(); Ok(ConValue::Empty) } } } mod dbg { //! Implements the unstable `dbg(...)` builtin use super::builtin_imports::*; #[derive(Clone, Debug)] pub struct Dbg; impl BuiltIn for Dbg {} #[rustfmt::skip] impl Callable for Dbg { fn name(&self) -> &str { "dbg" } fn call(&self, _inter: &mut Environment, args: &[ConValue]) -> IResult { println!("{args:?}"); Ok(args.into()) } } } mod dump { use super::builtin_imports::*; #[derive(Clone, Debug)] pub struct Dump; impl BuiltIn for Dump {} impl Callable for Dump { fn call(&self, env: &mut Environment, _args: &[ConValue]) -> IResult { println!("{}", *env); Ok(ConValue::Empty) } fn name(&self) -> &str { "dump" } } } } pub mod env { //! Lexical and non-lexical scoping for variables use super::{ builtin::DEFAULT_BUILTINS, error::{Error, IResult}, function::Function, temp_type_impl::ConValue, Callable, FnDecl, Interpret, }; use std::{ collections::HashMap, fmt::Display, ops::{Deref, DerefMut}, }; /// Implements a nested lexical scope #[derive(Clone, Debug)] pub struct Environment { frames: Vec<(HashMap>, &'static str)>, } impl Display for Environment { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { for (frame, name) in self.frames.iter().rev() { writeln!(f, "--- {name} ---")?; for (var, val) in frame { write!(f, "- {var}: ")?; match val { Some(value) => writeln!(f, "{value}"), None => writeln!(f, ""), }? } } Ok(()) } } impl Default for Environment { fn default() -> Self { let mut builtins = HashMap::new(); for &builtin in DEFAULT_BUILTINS { builtins.insert(builtin.name().into(), Some(ConValue::BuiltIn(builtin))); } // FIXME: Temporary until modules are implemented Self { frames: vec![(builtins, "builtins"), (HashMap::new(), "globals")] } } } impl Environment { pub fn new() -> Self { Self::default() } /// Creates an [Environment] with no [builtins](super::builtin) pub fn no_builtins(name: &'static str) -> Self { Self { frames: vec![(Default::default(), name)] } } pub fn eval(&mut self, node: &impl Interpret) -> IResult { node.interpret(self) } /// Calls a function inside the interpreter's scope, /// and returns the result pub fn call(&mut self, name: &str, args: &[ConValue]) -> IResult { // FIXME: Clone to satisfy the borrow checker let function = self.get(name)?.clone(); function.call(self, args) } /// Enters a nested scope, returning a [`Frame`] stack-guard. /// /// [`Frame`] implements Deref/DerefMut for [`Environment`]. pub fn frame(&mut self, name: &'static str) -> Frame { Frame::new(self, name) } /// Resolves a variable mutably. /// /// Returns a mutable reference to the variable's record, if it exists. pub fn get_mut(&mut self, id: &str) -> IResult<&mut Option> { for (frame, _) in self.frames.iter_mut().rev() { if let Some(var) = frame.get_mut(id) { return Ok(var); } } Err(Error::NotDefined(id.into())) } /// Resolves a variable immutably. /// /// Returns a reference to the variable's contents, if it is defined and initialized. pub fn get(&self, id: &str) -> IResult<&ConValue> { for (frame, _) in self.frames.iter().rev() { match frame.get(id) { Some(Some(var)) => return Ok(var), Some(None) => return Err(Error::NotInitialized(id.into())), _ => (), } } Err(Error::NotDefined(id.into())) } /// Inserts a new [ConValue] into this [Environment] pub fn insert(&mut self, id: &str, value: Option) { if let Some((frame, _)) = self.frames.last_mut() { frame.insert(id.into(), value); } } /// A convenience function for registering a [FnDecl] as a [Function] pub fn insert_fn(&mut self, decl: &FnDecl) { let (name, function) = ( decl.name.symbol.name.clone(), Some(Function::new(decl).into()), ); if let Some((frame, _)) = self.frames.last_mut() { frame.insert(name, function); } } } /// Functions which aid in the implementation of [`Frame`] impl Environment { /// Enters a scope, creating a new namespace for variables fn enter(&mut self, name: &'static str) -> &mut Self { self.frames.push((Default::default(), name)); self } /// Exits the scope, destroying all local variables and /// returning the outer scope, if there is one fn exit(&mut self) -> &mut Self { if self.frames.len() > 2 { self.frames.pop(); } self } } /// Represents a stack frame #[derive(Debug)] pub struct Frame<'scope> { scope: &'scope mut Environment, } impl<'scope> Frame<'scope> { fn new(scope: &'scope mut Environment, name: &'static str) -> Self { Self { scope: scope.enter(name) } } } impl<'scope> Deref for Frame<'scope> { type Target = Environment; fn deref(&self) -> &Self::Target { self.scope } } impl<'scope> DerefMut for Frame<'scope> { fn deref_mut(&mut self) -> &mut Self::Target { self.scope } } impl<'scope> Drop for Frame<'scope> { fn drop(&mut self) { self.scope.exit(); } } } pub mod error { //! The [Error] type represents any error thrown by the [Environment](super::Environment) use super::temp_type_impl::ConValue; pub type IResult = Result; /// Represents any error thrown by the [Environment](super::Environment) #[derive(Clone, Debug)] pub enum Error { /// Propagate a Return value Return(ConValue), /// Propagate a Break value Break(ConValue), /// Break propagated across function bounds BadBreak(ConValue), /// Continue to the next iteration of a loop Continue, /// Underflowed the stack StackUnderflow, /// Exited the last scope ScopeExit, /// Type incompatibility // TODO: store the type information in this error TypeError, /// In clause of For loop didn't yield a Range NotIterable, /// A name was not defined in scope before being used NotDefined(String), /// A name was defined but not initialized NotInitialized(String), /// A value was called, but is not callable NotCallable(ConValue), /// A function was called with the wrong number of arguments ArgNumber { want: usize, got: usize }, } impl std::error::Error for Error {} impl std::fmt::Display for Error { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { match self { Error::Return(value) => write!(f, "return {value}"), Error::Break(value) => write!(f, "break {value}"), Error::BadBreak(value) => write!(f, "rogue break: {value}"), Error::Continue => "continue".fmt(f), Error::StackUnderflow => "Stack underflow".fmt(f), Error::ScopeExit => "Exited the last scope. This is a logic bug.".fmt(f), Error::TypeError => "Incompatible types".fmt(f), Error::NotIterable => "`in` clause of `for` loop did not yield an iterable".fmt(f), Error::NotDefined(value) => { write!(f, "{value} not bound. Did you mean `let {value};`?") } Error::NotInitialized(value) => { write!(f, "{value} bound, but not initialized") } Error::NotCallable(value) => { write!(f, "{value} is not a function, and cannot be called") } Error::ArgNumber { want, got } => { write!(f, "Expected {want} arguments, got {got}") } } } } }