Conlang/libconlang/src/parser.rs

832 lines
28 KiB
Rust
Raw Normal View History

2023-10-17 18:36:21 +00:00
//! Parses [tokens](super::token) into an [AST](super::ast)
2024-01-21 07:34:40 +00:00
#![deprecated]
#![allow(deprecated)]
use super::{ast::preamble::*, lexer::Lexer, token::preamble::*};
use error::{Error, *};
2023-10-17 18:36:21 +00:00
pub mod error {
2023-10-17 18:36:21 +00:00
use super::{Token, Type};
use std::fmt::Display;
2023-10-17 18:36:21 +00:00
pub trait WrapError {
/// Wraps this error in a parent [Error]
fn wrap(self, parent: Error) -> Self;
}
impl WrapError for Error {
fn wrap(self, parent: Error) -> Self {
Self { child: Some(self.into()), ..parent }
}
}
impl<T> WrapError for Result<T, Error> {
fn wrap(self, parent: Error) -> Self {
self.map_err(|e| e.wrap(parent))
}
}
/// The reason for the [Error]
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq)]
2023-10-17 18:36:21 +00:00
pub enum Reason {
Expected(Type),
Unexpected(Type),
NotPathSegment(Type),
2023-10-17 18:36:21 +00:00
NotIdentifier,
NotStatement,
NotLet,
NotFnDecl,
NotOperator,
2023-10-17 18:36:21 +00:00
NotLiteral,
NotString,
NotChar,
2023-10-17 18:36:21 +00:00
NotBool,
NotFloat,
NotInt,
2023-10-17 18:36:21 +00:00
FloatExponentOverflow,
FloatMantissaOverflow,
IntOverflow,
NotBranch,
IncompleteBranch,
2023-10-17 18:36:21 +00:00
EndOfFile,
PanicStackUnderflow,
2023-10-17 18:36:21 +00:00
#[default]
Unspecified,
}
use Reason::*;
impl Display for Reason {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Self::Expected(t) => write!(f, "Expected {t}"),
Self::Unexpected(t) => write!(f, "Unexpected {t} in bagging area"),
Self::NotPathSegment(t) => write!(f, "{t} not a path segment"),
Self::NotIdentifier => "Not an identifier".fmt(f),
Self::NotStatement => "Not a statement".fmt(f),
Self::NotLet => "Not a let statement".fmt(f),
Self::NotFnDecl => "Not a valid function declaration".fmt(f),
Self::NotOperator => "Not an operator".fmt(f),
Self::NotLiteral => "Not a literal".fmt(f),
Self::NotString => "Not a string".fmt(f),
Self::NotChar => "Not a char".fmt(f),
Self::NotBool => "Not a bool".fmt(f),
Self::NotFloat => "Not a float".fmt(f),
Self::FloatExponentOverflow => "Float exponent too large".fmt(f),
Self::FloatMantissaOverflow => "Float mantissa too large".fmt(f),
Self::NotInt => "Not an integer".fmt(f),
Self::IntOverflow => "Integer too large".fmt(f),
Self::IncompleteBranch => "Branch expression was incomplete".fmt(f),
Self::NotBranch => "Expected branch expression".fmt(f),
Self::EndOfFile => "Got end of file".fmt(f),
Self::PanicStackUnderflow => "Could not recover from panic".fmt(f),
Self::Unspecified => {
"Unspecified error. You are permitted to slap the code author.".fmt(f)
}
}
}
}
/// [Parser](super::Parser) [Result]
2023-10-17 18:36:21 +00:00
pub type PResult<T> = Result<T, Error>;
/// An error produced by the [Parser](super::Parser).
///
/// Contains a [Reason], and, optionally, a start [Token]
#[derive(Clone, Debug, Default, PartialEq)]
2023-10-17 18:36:21 +00:00
pub struct Error {
reason: Reason,
child: Option<Box<Self>>,
2023-10-17 18:36:21 +00:00
start: Option<Token>,
}
impl std::error::Error for Error {}
impl Display for Error {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
if let Some(child) = &self.child {
write!(f, "{child}: ")?;
}
if let Some(token) = &self.start {
write!(f, "{}:{}: ", token.line(), token.col())?;
}
write!(f, "{}", self.reason)
}
}
2023-10-17 18:36:21 +00:00
macro error_impl($($fn:ident$(($($p:ident: $t:ty),*))?: $reason:expr),*$(,)?) {$(
2023-10-24 04:43:11 +00:00
/// Creates an [Error] with this [Reason]:
#[doc = concat!("[`", stringify!($reason), "`]")]
#[allow(dead_code)]
pub(crate) fn $fn($($($p : $t),*)?) -> Self {
Self { reason: $reason$(($($p)*))?, child: None, start: None }
}
)*}
2023-10-17 18:36:21 +00:00
impl Error {
/// Provides an optional start [Token]
2023-10-17 18:36:21 +00:00
pub fn token(self, start: Token) -> Self {
Self { start: Some(start), ..self }
}
/// Optionally sets the start [Token]
pub fn maybe_token(self, start: Option<Token>) -> Self {
Self { start, ..self }
}
/// Gets a reference to the start [Token], if there is one
pub fn start(&self) -> Option<&Token> {
self.start.as_ref()
2023-10-17 18:36:21 +00:00
}
/// Gets the [Reason] for this error
pub fn reason(&self) -> Reason {
self.reason
}
2023-10-17 18:36:21 +00:00
error_impl! {
expected(e: Type): Expected,
unexpected(e: Type): Unexpected,
not_path_segment(e: Type): NotPathSegment,
2023-10-17 18:36:21 +00:00
not_identifier: NotIdentifier,
not_statement: NotStatement,
not_let: NotLet,
not_fn_decl: NotFnDecl,
not_operator: NotOperator,
2023-10-17 18:36:21 +00:00
not_literal: NotLiteral,
not_string: NotString,
not_char: NotChar,
2023-10-17 18:36:21 +00:00
not_bool: NotBool,
not_float: NotFloat,
float_exponent_overflow: FloatExponentOverflow,
float_mantissa_overflow: FloatMantissaOverflow,
not_int: NotInt,
int_overflow: IntOverflow,
not_branch: NotBranch,
end_of_file: EndOfFile,
panic_underflow: PanicStackUnderflow,
2023-10-17 18:36:21 +00:00
unspecified: Unspecified,
}
}
}
/// The Parser performs recursive descent on the AST's grammar
/// using a provided [Lexer].
pub struct Parser {
2023-10-17 18:36:21 +00:00
tokens: Vec<Token>,
panic_stack: Vec<usize>,
pub errors: Vec<Error>,
cursor: usize,
2023-10-17 18:36:21 +00:00
}
impl<'t> From<Lexer<'t>> for Parser {
2023-10-17 18:36:21 +00:00
fn from(value: Lexer<'t>) -> Self {
let mut tokens = vec![];
for result in value {
match result {
Ok(t) => tokens.push(t),
Err(e) => println!("{e}"),
}
}
Self::new(tokens)
2023-10-17 18:36:21 +00:00
}
}
impl Parser {
2023-10-17 18:36:21 +00:00
/// Create a new [Parser] from a list of [Tokens][1]
/// and the [text](str) used to generate that list
/// (as [Tokens][1] do not store their strings)
///
/// [1]: Token
pub fn new(tokens: Vec<Token>) -> Self {
Self { tokens, panic_stack: vec![], errors: vec![], cursor: 0 }
2023-10-17 18:36:21 +00:00
}
/// Resets the parser, so it can be reused
pub fn reset(&mut self) -> &mut Self {
*self = Self::new(std::mem::take(&mut self.tokens));
self
}
/// Parses the [start of an AST](Start)
pub fn parse(&mut self) -> PResult<Start> {
self.consume_comments();
Ok(Start(self.program()?))
}
/// Parses only one expression
pub fn parse_expr(&mut self) -> PResult<Expr> {
self.expr()
}
/// Peeks at the current token
pub fn peek(&self) -> PResult<&Token> {
self.tokens
.get(self.cursor)
.ok_or_else(|| Error::end_of_file().maybe_token(self.tokens.last().cloned()))
}
/// Consumes any number of consecutive comments
2023-10-17 18:36:21 +00:00
fn consume_comments(&mut self) -> &mut Self {
while let Ok(Type::Comment) = self.peek().map(|t| t.ty()) {
self.cursor += 1;
2023-10-17 18:36:21 +00:00
}
self
}
/// Consumes the current token
2023-10-17 18:36:21 +00:00
#[inline]
2023-10-24 04:43:11 +00:00
fn consume(&mut self) -> &mut Self {
self.cursor += 1;
2023-10-17 18:36:21 +00:00
self.consume_comments();
self
}
}
/// Panicking
#[allow(dead_code)]
impl Parser {
2023-10-17 18:36:21 +00:00
/// Records the current position on the panic stack
2023-10-24 04:43:11 +00:00
fn mark(&mut self) -> &mut Self {
self.panic_stack.push(self.cursor);
2023-10-17 18:36:21 +00:00
self
}
/// Erases a recorded position from the panic stack
2023-10-24 04:43:11 +00:00
fn unmark(&mut self) -> &mut Self {
2023-10-17 18:36:21 +00:00
self.panic_stack.pop();
self
}
/// Unwinds the panic stack one step
2023-10-24 04:43:11 +00:00
fn unwind(&mut self) -> PResult<&mut Self> {
let v = self.panic_stack.pop().ok_or(Error::panic_underflow())?;
self.cursor = v;
Ok(self)
}
/// Advances forward until a token with type [`t`](Type) is encountered
2023-10-24 04:43:11 +00:00
fn advance_until(&mut self, t: Type) -> PResult<&mut Self> {
while self.matches(t).is_err() {
self.check_eof().wrap(Error::expected(t))?.consume();
2023-10-17 18:36:21 +00:00
}
Ok(self)
2023-10-17 18:36:21 +00:00
}
/// Marks the current position, and unwinds the panic stack if `f` fails.
fn attempt<F, R>(&mut self, f: F) -> PResult<R>
where F: FnOnce(&mut Self) -> PResult<R> {
self.mark();
let out = f(self);
match out {
Ok(_) => self.unmark(),
Err(_) => self.unwind()?,
};
out
}
2023-10-17 18:36:21 +00:00
}
/// Helpers
impl Parser {
/// Returns an error if the end of input has been reached
2023-10-17 18:36:21 +00:00
fn check_eof(&mut self) -> PResult<&mut Self> {
if self.cursor < self.tokens.len() {
2023-10-17 18:36:21 +00:00
Ok(self)
} else {
Err(Error::end_of_file().maybe_token(self.tokens.last().cloned()))
2023-10-17 18:36:21 +00:00
}
}
/// Peeks at the next token if it has the expected [Type]
fn matches(&mut self, t: Type) -> PResult<&Token> {
let token = self.check_eof()?.peek().expect("self should not be eof");
if token.ty() != t {
Err(Error::expected(t).token(token.clone()))
} else {
Ok(token)
2023-10-17 18:36:21 +00:00
}
}
/// Consumes, without returning, a token with the given [Keyword], or returns an error.
2023-10-27 05:19:19 +00:00
///
/// Useful if you only want to check the existence of a [Keyword]
2023-10-17 18:36:21 +00:00
fn keyword(&mut self, keyword: Keyword) -> PResult<&mut Self> {
self.consume_type(Type::Keyword(keyword))
}
/// Consumes, without returning, a token with the given [Type], or returns an error.
2023-10-27 05:19:19 +00:00
///
/// Useful if you only want to check the existence of a token.
fn consume_type(&mut self, t: Type) -> PResult<&mut Self> {
self.matches(t)?;
Ok(self.consume())
}
#[doc(hidden)]
fn todo_error(&mut self, l: u32, c: u32, s: &str) -> Error {
eprintln!("TODO: {s}:{l}:{c}");
Error::unspecified().token(self.peek().unwrap().clone())
}
2023-10-17 18:36:21 +00:00
}
/// TODO: Remove `ptodo*`
2023-10-17 18:36:21 +00:00
macro ptodo_err($self:expr $(, $t:expr)*) {
$($t;)*
$self.todo_error(line!(), column!(), file!())
}
macro ptodo($self:expr $(, $t:expr)*) {
$($t;)*
Err(ptodo_err!($self))
}
/// # Terminals and Pseudo-Terminals
impl Parser {
/// Parses an [Identifier]
fn identifier(&mut self) -> PResult<Identifier> {
let out = match self.matches(Type::Identifier)?.data() {
Data::Identifier(id) => Identifier { name: id.to_string(), index: None },
_ => Err(Error::not_identifier())?,
};
self.consume();
Ok(out)
2023-10-17 18:36:21 +00:00
}
/// Parses a [Literal](literal::Literal)
fn literal(&mut self) -> PResult<literal::Literal> {
2023-10-17 18:36:21 +00:00
use literal::Literal::*;
use Keyword::{False, True};
let token = self.peek()?;
match token.ty() {
2023-10-17 18:36:21 +00:00
Type::Float => self.float().map(Float),
Type::Integer => self.int().map(Int),
2023-10-17 18:36:21 +00:00
Type::String => self.string().map(String),
Type::Character => self.char().map(Char),
Type::Keyword(True | False) => self.bool().map(Bool),
_ => Err(Error::not_literal().token(token.clone())),
2023-10-17 18:36:21 +00:00
}
}
/// Parses a [floating point literal](literal::Float)
fn float(&mut self) -> PResult<literal::Float> {
2023-10-17 18:36:21 +00:00
ptodo!(self)
}
/// Parses an [integer literal](u128)
///
/// u128 was chosen for this, since it stores the largest integer precision Rust natively
/// supports. Conlang doesn't currently plan to support arbitrary-width arithmetic anyway.
fn int(&mut self) -> PResult<u128> {
let out = match self.matches(Type::Integer)?.data() {
Data::Integer(i) => *i,
_ => Err(Error::not_int())?,
};
self.consume();
Ok(out)
2023-10-17 18:36:21 +00:00
}
/// Parses a [string literal](String)
fn string(&mut self) -> PResult<String> {
let out = match self.matches(Type::String)?.data() {
Data::String(s) => s.clone(),
_ => Err(Error::not_string())?,
};
self.consume();
Ok(out)
2023-10-17 18:36:21 +00:00
}
/// Parses a [character literal](char)
fn char(&mut self) -> PResult<char> {
let out = match self.matches(Type::Character)?.data() {
Data::Character(c) => *c,
_ => Err(Error::not_char())?,
};
self.consume();
Ok(out)
2023-10-17 18:36:21 +00:00
}
/// Parses a [boolean literal](bool)
fn bool(&mut self) -> PResult<bool> {
2023-10-17 18:36:21 +00:00
use Keyword::{False, True};
let token = self.peek()?;
2023-10-17 18:36:21 +00:00
let out = match token.ty() {
Type::Keyword(False) => false,
Type::Keyword(True) => true,
_ => Err(Error::not_bool().token(token.clone()))?,
2023-10-17 18:36:21 +00:00
};
self.consume();
Ok(out)
}
}
/// Statements
impl Parser {
/// Parses a series of [statements](Stmt)
fn program(&mut self) -> PResult<Program> {
let mut out = vec![];
while self.check_eof().is_ok() {
out.push(self.stmt()?);
}
Ok(Program(out))
}
/// Parses a single [statement](Stmt)
fn stmt(&mut self) -> PResult<Stmt> {
let token = self.peek()?;
match token.ty() {
Type::Keyword(Keyword::Let) => self.let_stmt().map(Stmt::Let).wrap(Error::not_let()),
Type::Keyword(Keyword::Fn) => self.fn_decl().map(Stmt::Fn).wrap(Error::not_fn_decl()),
_ => {
let out = Stmt::Expr(self.expr()?);
self.consume_type(Type::Semi)?;
Ok(out)
}
}
.wrap(Error::not_statement())
}
/// Parses a [Let] statement
fn let_stmt(&mut self) -> PResult<Let> {
self.keyword(Keyword::Let)?;
let out =
Let { name: self.name()?, init: self.consume_type(Type::Eq).and_then(Self::expr).ok() };
self.consume_type(Type::Semi)?;
Ok(out)
}
/// Parses a [function declaration](FnDecl) statement
fn fn_decl(&mut self) -> PResult<FnDecl> {
self.keyword(Keyword::Fn)?;
let name = self.identifier()?;
self.consume_type(Type::LParen)?;
let args = self.params()?;
self.consume_type(Type::RParen)?;
// TODO: Parse type-expressions and store return types in the AST
let ty = if self.consume_type(Type::Arrow).is_ok() {
Some(self.type_expr()?)
} else {
None
};
Ok(FnDecl { name: Name { symbol: name, mutable: false, ty }, args, body: self.block()? })
}
/// Parses a [parameter](Name) list for [FnDecl]
fn params(&mut self) -> PResult<Vec<Name>> {
let mut args = vec![];
while let Ok(name) = self.name() {
args.push(name);
if self.consume_type(Type::Comma).is_err() {
break;
}
}
Ok(args)
}
/// Parses a [Name]; the object of a let statement, or a single function parameter.
fn name(&mut self) -> PResult<Name> {
Ok(Name {
mutable: self.keyword(Keyword::Mut).is_ok(),
symbol: self.identifier()?,
ty: self
.consume_type(Type::Colon)
.and_then(|this| this.type_expr())
.ok(),
})
}
}
/// Path Expressions
impl Parser {
fn path(&mut self) -> PResult<path::Path> {
let absolute = self.consume_type(Type::ColonColon).is_ok();
let mut parts = vec![];
while let Ok(id) = self.path_part() {
parts.push(id);
if self.consume_type(Type::ColonColon).is_err() {
break;
}
}
Ok(Path { absolute, parts })
}
fn path_part(&mut self) -> PResult<PathPart> {
match self.peek()?.ty() {
Type::Identifier => self.identifier().map(PathPart::PathIdent),
Type::Keyword(Keyword::Super) => {
self.keyword(Keyword::Super).map(|_| PathPart::PathSuper)
}
Type::Keyword(Keyword::SelfKw) => {
self.keyword(Keyword::SelfKw).map(|_| PathPart::PathSelf)
}
e => Err(Error::not_path_segment(e)),
}
}
}
/// Type Expressions
impl Parser {
/// Parses a [Type Expression](TypeExpr)
fn type_expr(&mut self) -> PResult<TypeExpr> {
match self.peek()?.ty() {
Type::LParen => self.type_tuple().map(TypeExpr::TupleType),
Type::Bang => self.type_never().map(TypeExpr::Never),
_ => self.path().map(TypeExpr::TypePath),
}
}
fn type_tuple(&mut self) -> PResult<TupleType> {
self.consume_type(Type::LParen)?;
let mut types = vec![];
while let Ok(ty) = self.type_expr() {
types.push(ty);
if self.consume_type(Type::Comma).is_err() {
break;
}
}
self.consume_type(Type::RParen)?;
Ok(TupleType { types })
}
fn type_never(&mut self) -> PResult<Never> {
self.consume_type(Type::Bang).map(|_| Never)
}
}
2023-10-17 18:36:21 +00:00
/// Expressions
impl Parser {
/// Parses an [expression](Expr)
fn expr(&mut self) -> PResult<Expr> {
2023-10-27 05:19:19 +00:00
Ok(Expr(self.assign()?))
}
/// Parses a [block expression](Block)
fn block(&mut self) -> PResult<Block> {
let mut statements = vec![];
let mut expr: Option<Box<Expr>> = None;
self.consume_type(Type::LCurly)?;
// tHeRe Is No PlAcE iN yOuR gRaMmAr WhErE bOtH aN eXpReSsIoN aNd A sTaTeMeNt ArE eXpEcTeD
while self.consume_type(Type::RCurly).is_err() {
match self.expr() {
Ok(e) if self.consume_type(Type::Semi).is_ok() => statements.push(Stmt::Expr(e)),
Ok(e) => {
expr = Some(Box::new(e));
self.consume_type(Type::RCurly)?;
break;
}
Err(_) => statements.push(self.stmt()?),
}
}
Ok(Block { statements, expr, let_count: None })
2023-10-17 18:36:21 +00:00
}
/// Parses a [primary expression](Primary)
fn primary(&mut self) -> PResult<Primary> {
let token = self.peek()?;
match token.ty() {
Type::Identifier => self.identifier().map(Primary::Identifier),
Type::String
| Type::Character
| Type::Integer
| Type::Float
| Type::Keyword(Keyword::True | Keyword::False) => self.literal().map(Primary::Literal),
Type::LCurly => self.block().map(Primary::Block),
Type::LParen => self.group().map(Primary::Group),
Type::Keyword(_) => self.flow().map(Primary::Branch),
e => Err(Error::unexpected(e).token(token.clone()))?,
}
2023-10-17 18:36:21 +00:00
}
}
/// [Call] expressions
impl Parser {
/// Parses a [call expression](Call)
fn call(&mut self) -> PResult<Call> {
let callee = self.primary()?;
if self.matches(Type::LParen).is_err() {
return Ok(Call::Primary(callee));
};
let mut args = vec![];
while self.consume_type(Type::LParen).is_ok() {
match self.consume_type(Type::RParen) {
Ok(_) => args.push(Tuple { elements: vec![] }),
Err(_) => {
args.push(self.tuple()?);
self.consume_type(Type::RParen)?;
}
}
}
Ok(Call::FnCall(FnCall { callee: callee.into(), args }))
}
}
/// Groups and Tuples
impl Parser {
/// Parses a [group expression](Group)
fn group(&mut self) -> PResult<Group> {
let t = self.consume_type(Type::LParen)?.peek()?;
match t.ty() {
Type::RParen => {
self.consume();
Ok(Group::Empty)
}
_ => {
let mut out = self.tuple()?;
let out = if out.elements.len() == 1 {
Group::Single(out.elements.remove(0).into())
} else {
Group::Tuple(out)
};
self.consume_type(Type::RParen)?;
Ok(out)
}
}
}
/// Parses a [tuple expression](Tuple)
fn tuple(&mut self) -> PResult<Tuple> {
let mut elements = vec![self.expr()?];
while self.consume_type(Type::Comma).is_ok() {
elements.push(self.expr()?);
}
Ok(Tuple { elements })
}
}
2023-10-17 18:36:21 +00:00
/// Helper macro for math parsing subexpressions with production
/// ```ebnf
/// Ret = a (b a)*
/// ```
/// # Examples
/// ```rust,ignore
/// binary!{
2023-10-17 18:36:21 +00:00
/// function_name: ret::Value = parse_operands, parse_operators;
/// }
/// ```
/// becomes
/// ```rust,ignore
/// fn function_name(&mut self) -> PResult<ret::Value> { ... }
2023-10-17 18:36:21 +00:00
/// ```
macro binary ($($f:ident = $a:ident, $b:ident);*$(;)?) {$(
#[doc = concat!("Parses a(n) [", stringify!($f), " operation](Operation::Binary) expression")]
fn $f (&mut self) -> PResult<Operation> {
let (first, mut other) = (self.$a()?, vec![]);
while let Ok(op) = self.$b() {
other.push((op, self.$a()?));
2023-10-17 18:36:21 +00:00
}
Ok(if other.is_empty() { first } else {
Operation::Binary(Binary { first: first.into(), other })
})
2023-10-17 18:36:21 +00:00
}
)*}
/// # [Arithmetic and Logical Subexpressions](math)
impl Parser {
fn assign(&mut self) -> PResult<Operation> {
let next = self.compare()?;
let Ok(operator) = self.assign_op() else {
return Ok(next);
};
let Operation::Call(Call::Primary(Primary::Identifier(target))) = next else {
return Ok(next);
};
Ok(Operation::Assign(Assign {
target,
operator,
init: self.assign()?.into(),
}))
}
binary! {
// name operands operators
compare = range, compare_op;
range = logic, range_op;
logic = bitwise, logic_op;
bitwise = shift, bitwise_op;
shift = term, shift_op;
term = factor, term_op;
factor = unary, factor_op;
}
/// Parses a [unary operation](Operation::Unary) expression
fn unary(&mut self) -> PResult<Operation> {
let mut operators = vec![];
while let Ok(op) = self.unary_op() {
operators.push(op)
2023-10-17 18:36:21 +00:00
}
if operators.is_empty() {
return self.primary_operation();
}
Ok(Operation::Unary(Unary {
operators,
operand: self.primary_operation()?.into(),
}))
}
/// Parses a [primary operation](Operation::Primary) expression
fn primary_operation(&mut self) -> PResult<Operation> {
Ok(Operation::Call(self.call()?))
2023-10-17 18:36:21 +00:00
}
}
macro operator_impl ($($(#[$m:meta])* $f:ident : {$($type:pat => $op:ident),*$(,)?})*) {
$($(#[$m])* fn $f(&mut self) -> PResult<operator::Binary> {
use operator::Binary;
let token = self.peek().wrap(Error::not_operator())?;
let out = Ok(match token.ty() {
$($type => Binary::$op,)*
_ => Err(Error::not_operator().token(token.clone()))?,
});
self.consume();
2023-10-17 18:36:21 +00:00
out
})*
}
2023-10-17 18:36:21 +00:00
/// # [Operators](operator)
impl Parser {
2023-10-17 18:36:21 +00:00
operator_impl! {
/// Parses a [factor operator](operator)
factor_op: {
Type::Star => Mul,
Type::Slash => Div,
Type::Rem => Rem,
}
/// Parses a [term operator](operator)
term_op: {
Type::Plus => Add,
Type::Minus => Sub,
}
/// Parses a [shift operator](operator)
shift_op: {
Type::LtLt => Lsh,
Type::GtGt => Rsh,
}
/// Parses a [bitwise operator](operator)
bitwise_op: {
Type::Amp => BitAnd,
Type::Bar => BitOr,
Type::Xor => BitXor,
}
/// Parses a [logic operator](operator)
logic_op: {
Type::AmpAmp => LogAnd,
Type::BarBar => LogOr,
Type::XorXor => LogXor,
}
/// Parses a [range operator](operator)
range_op: {
Type::DotDot => RangeExc,
Type::DotDotEq => RangeInc,
}
/// Parses a [compare operator](operator)
compare_op: {
Type::Lt => Less,
Type::LtEq => LessEq,
Type::EqEq => Equal,
Type::BangEq => NotEq,
Type::GtEq => GreaterEq,
Type::Gt => Greater,
}
}
/// Parses an [assign operator](operator::Assign)
fn assign_op(&mut self) -> PResult<operator::Assign> {
use operator::Assign;
let token = self.peek()?;
let out = Ok(match token.ty() {
Type::Eq => Assign::Assign,
Type::PlusEq => Assign::AddAssign,
Type::MinusEq => Assign::SubAssign,
Type::StarEq => Assign::MulAssign,
Type::SlashEq => Assign::DivAssign,
Type::RemEq => Assign::RemAssign,
Type::AmpEq => Assign::BitAndAssign,
Type::BarEq => Assign::BitOrAssign,
Type::XorEq => Assign::BitXorAssign,
Type::LtLtEq => Assign::ShlAssign,
Type::GtGtEq => Assign::ShrAssign,
_ => Err(Error::not_operator().token(token.clone()))?,
});
self.consume();
out
}
/// Parses a [unary operator](operator::Unary)
fn unary_op(&mut self) -> PResult<operator::Unary> {
use operator::Unary;
let token = self.peek()?;
let out = Ok(match token.ty() {
Type::AmpAmp => Unary::RefRef,
Type::Amp => Unary::Ref,
Type::Star => Unary::Deref,
Type::Minus => Unary::Neg,
Type::Bang => Unary::Not,
Type::At => Unary::At,
Type::Hash => Unary::Hash,
Type::Tilde => Unary::Tilde,
_ => Err(Error::not_operator().token(token.clone()))?,
});
self.consume();
out
2023-10-17 18:36:21 +00:00
}
}
/// # [Control Flow](control)
impl Parser {
/// Parses a [control flow](Flow) expression
fn flow(&mut self) -> PResult<Flow> {
use Keyword::{Break, Continue, For, If, Return, While};
let token = self.peek()?;
2023-10-17 18:36:21 +00:00
match token.ty() {
Type::Keyword(While) => self.parse_while().map(Flow::While),
Type::Keyword(For) => self.parse_for().map(Flow::For),
Type::Keyword(If) => self.parse_if().map(Flow::If),
Type::Keyword(Break) => self.parse_break().map(Flow::Break),
Type::Keyword(Return) => self.parse_return().map(Flow::Return),
Type::Keyword(Continue) => self.parse_continue().map(Flow::Continue),
e => Err(Error::unexpected(e).token(token.clone()))?,
2023-10-17 18:36:21 +00:00
}
.wrap(Error::not_branch())
2023-10-17 18:36:21 +00:00
}
/// Parses an [if](If) expression
fn parse_if(&mut self) -> PResult<If> {
self.keyword(Keyword::If)?;
Ok(If { cond: self.expr()?.into(), body: self.block()?, else_: self.parse_else()? })
2023-10-17 18:36:21 +00:00
}
/// Parses a [while](While) expression
fn parse_while(&mut self) -> PResult<While> {
self.keyword(Keyword::While)?;
Ok(While { cond: self.expr()?.into(), body: self.block()?, else_: self.parse_else()? })
2023-10-17 18:36:21 +00:00
}
/// Parses a [for](For) expression
fn parse_for(&mut self) -> PResult<For> {
2023-10-17 18:36:21 +00:00
self.keyword(Keyword::For)?;
Ok(For {
2023-10-17 18:36:21 +00:00
var: self.identifier()?,
iter: { self.keyword(Keyword::In)?.expr()?.into() },
body: self.block()?,
else_: self.parse_else()?,
})
}
/// Parses an [else](Else) sub-expression
fn parse_else(&mut self) -> PResult<Option<Else>> {
2023-10-17 18:36:21 +00:00
// it's fine for `else` to be missing entirely
self.keyword(Keyword::Else)
.ok()
.map(|p| Ok(Else { expr: p.expr()?.into() }))
.transpose()
2023-10-17 18:36:21 +00:00
}
/// Parses a [break](Break) expression
fn parse_break(&mut self) -> PResult<Break> {
Ok(Break { expr: self.keyword(Keyword::Break)?.expr()?.into() })
2023-10-17 18:36:21 +00:00
}
/// Parses a [return](Return) expression
fn parse_return(&mut self) -> PResult<Return> {
Ok(Return { expr: self.keyword(Keyword::Return)?.expr()?.into() })
2023-10-17 18:36:21 +00:00
}
/// Parses a [continue](Continue) expression
fn parse_continue(&mut self) -> PResult<Continue> {
self.keyword(Keyword::Continue)?;
Ok(Continue)
2023-10-17 18:36:21 +00:00
}
}