Merge branch 'imperative-rs'

Rewrote the disassembler and `cpu::tick()` for code concision and massive speed improvements.

Turns out, getting the current time takes AGES, so if we don't need it, we don't get it.
This commit is contained in:
John 2023-03-31 14:33:40 -05:00
commit a744fa08c7
15 changed files with 503 additions and 705 deletions

22
Cargo.lock generated
View File

@ -182,6 +182,7 @@ version = "0.1.0"
dependencies = [ dependencies = [
"gumdrop", "gumdrop",
"iced", "iced",
"imperative-rs",
"minifb", "minifb",
"owo-colors", "owo-colors",
"rand", "rand",
@ -1086,6 +1087,27 @@ version = "1.0.1"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b9e0384b61958566e926dc50660321d12159025e767c18e043daf26b70104c39" checksum = "b9e0384b61958566e926dc50660321d12159025e767c18e043daf26b70104c39"
[[package]]
name = "imperative-rs"
version = "0.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "fed4f0a3a8fe169e919b74f6ba77c473d356ef05d0d65da06467b8836e508aa3"
dependencies = [
"imperative-rs-derive",
]
[[package]]
name = "imperative-rs-derive"
version = "0.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "02b842fd8a24b2b715ac0baffae4aa72aa59ecb8e90d3de175180dbb5b1caaab"
dependencies = [
"lazy_static",
"proc-macro2",
"quote",
"syn 1.0.109",
]
[[package]] [[package]]
name = "indexmap" name = "indexmap"
version = "1.9.3" version = "1.9.3"

View File

@ -28,6 +28,7 @@ overflow-checks = false
[dependencies] [dependencies]
gumdrop = "^0.8.1" gumdrop = "^0.8.1"
iced = {version = "0.8.0", optional = true} iced = {version = "0.8.0", optional = true}
imperative-rs = "0.3.1"
minifb = { version = "^0.24.0", features = ["wayland"] } minifb = { version = "^0.24.0", features = ["wayland"] }
owo-colors = "^3" owo-colors = "^3"
rand = "^0.8.5" rand = "^0.8.5"

View File

@ -4,7 +4,7 @@ test:
cargo test --doc && cargo nextest run cargo test --doc && cargo nextest run
chirp: chirp:
cargo run --bin chirp -- tests/chip8-test-suite/bin/chip8-test-suite.ch8 cargo run --bin chirp-minifb -- tests/chip8-test-suite/bin/chip8-test-suite.ch8
cover: cover:
cargo llvm-cov --open --doctests cargo llvm-cov --open --doctests

View File

@ -1,7 +1,7 @@
use chirp::{error::Result, prelude::*}; use chirp::{cpu::Disassembler, error::Result, prelude::*};
use gumdrop::*; use gumdrop::*;
use std::{fs::read, path::PathBuf};
use owo_colors::OwoColorize; use owo_colors::OwoColorize;
use std::{fs::read, path::PathBuf};
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Options, Hash)] #[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Options, Hash)]
struct Arguments { struct Arguments {
@ -22,18 +22,20 @@ fn parse_hex(value: &str) -> std::result::Result<u16, std::num::ParseIntError> {
fn main() -> Result<()> { fn main() -> Result<()> {
let options = Arguments::parse_args_default_or_exit(); let options = Arguments::parse_args_default_or_exit();
let contents = &read(&options.file)?; let contents = &read(&options.file)?;
let disassembler = Disassemble::default(); let disassembler = Dis::default();
for (addr, insn) in contents[options.offset..].chunks_exact(2).enumerate() { for (addr, insn) in contents[options.offset..].chunks_exact(2).enumerate() {
let insn = u16::from_be_bytes( let insn = u16::from_be_bytes(
insn.try_into() insn.try_into()
.expect("Iterated over 2-byte chunks, got <2 bytes"), .expect("Iterated over 2-byte chunks, got <2 bytes"),
); );
println!( println!(
"{}",
format_args!(
"{:03x}: {} {:04x}", "{:03x}: {} {:04x}",
2 * addr + 0x200 + options.offset, 2 * addr + 0x200 + options.offset,
disassembler.instruction(insn), disassembler.once(insn),
insn.bright_black(), insn.bright_black(),
)
); );
} }
Ok(()) Ok(())

View File

@ -6,6 +6,7 @@
use chirp::{error::Result, prelude::*}; use chirp::{error::Result, prelude::*};
use gumdrop::*; use gumdrop::*;
use owo_colors::OwoColorize;
use std::fs::read; use std::fs::read;
use std::{ use std::{
path::PathBuf, path::PathBuf,
@ -23,11 +24,12 @@ struct Arguments {
#[options(help = "Enable pause mode at startup.")] #[options(help = "Enable pause mode at startup.")]
pub pause: bool, pub pause: bool,
#[options(help = "Set the instructions-per-frame rate.")] #[options(help = "Set the instructions-per-delay rate, or use realtime.")]
pub speed: Option<usize>, pub speed: Option<usize>,
#[options(help = "Run the emulator as fast as possible for `step` instructions.")] #[options(help = "Set the instructions-per-frame rate.")]
pub step: Option<usize>, pub step: Option<usize>,
#[options(help = "Enable performance benchmarking on stderr (requires -S)")]
pub perf: bool,
#[options( #[options(
short = "z", short = "z",
help = "Disable setting vF to 0 after a bitwise operation." help = "Disable setting vF to 0 after a bitwise operation."
@ -77,6 +79,7 @@ struct State {
pub speed: usize, pub speed: usize,
pub step: Option<usize>, pub step: Option<usize>,
pub rate: u64, pub rate: u64,
pub perf: bool,
pub ch8: Chip8, pub ch8: Chip8,
pub ui: UI, pub ui: UI,
pub ft: Instant, pub ft: Instant,
@ -88,6 +91,7 @@ impl State {
speed: options.speed.unwrap_or(8), speed: options.speed.unwrap_or(8),
step: options.step, step: options.step,
rate: options.frame_rate, rate: options.frame_rate,
perf: options.perf,
ch8: Chip8 { ch8: Chip8 {
bus: bus! { bus: bus! {
// Load the charset into ROM // Load the charset into ROM
@ -104,7 +108,7 @@ impl State {
0x50, 0x50,
0x200, 0x200,
0xefe, 0xefe,
Disassemble::default(), Dis::default(),
options.breakpoints, options.breakpoints,
ControlFlags { ControlFlags {
quirks: chirp::cpu::Quirks { quirks: chirp::cpu::Quirks {
@ -127,27 +131,35 @@ impl State {
state.ch8.bus.write(0x1feu16, options.data); state.ch8.bus.write(0x1feu16, options.data);
Ok(state) Ok(state)
} }
fn keys(&mut self) -> Option<()> { fn keys(&mut self) -> Result<Option<()>> {
self.ui.keys(&mut self.ch8) self.ui.keys(&mut self.ch8)
} }
fn frame(&mut self) -> Option<()> { fn frame(&mut self) -> Option<()> {
self.ui.frame(&mut self.ch8) self.ui.frame(&mut self.ch8)
} }
fn tick_cpu(&mut self) { fn tick_cpu(&mut self) -> Result<()> {
if !self.ch8.cpu.flags.pause { if !self.ch8.cpu.flags.pause {
let rate = self.speed; let rate = self.speed;
match self.step { match self.step {
Some(ticks) => { Some(ticks) => {
self.ch8.cpu.multistep(&mut self.ch8.bus, ticks); let time = Instant::now();
// Pause the CPU and clear step self.ch8.cpu.multistep(&mut self.ch8.bus, ticks)?;
self.ch8.cpu.flags.pause = true; if self.perf {
self.step = None; let time = time.elapsed();
let nspt = time.as_secs_f64() / ticks as f64;
eprintln!(
"{ticks},\t{time:.05?},\t{:.4}nspt,\t{}ipf",
nspt * 1_000_000_000.0,
((1.0 / 60.0f64) / nspt).trunc(),
);
}
} }
None => { None => {
self.ch8.cpu.multistep(&mut self.ch8.bus, rate); self.ch8.cpu.multistep(&mut self.ch8.bus, rate)?;
} }
} }
} }
Ok(())
} }
fn wait_for_next_frame(&mut self) { fn wait_for_next_frame(&mut self) {
let rate = 1_000_000_000 / self.rate + 1; let rate = 1_000_000_000 / self.rate + 1;
@ -157,21 +169,34 @@ impl State {
} }
impl Iterator for State { impl Iterator for State {
type Item = (); type Item = Result<()>;
/// Pretty heavily abusing iterators here, in an annoying way
fn next(&mut self) -> Option<Self::Item> { fn next(&mut self) -> Option<Self::Item> {
self.wait_for_next_frame(); self.wait_for_next_frame();
self.keys()?; match self.keys() {
self.tick_cpu(); Ok(opt) => opt?,
self.frame(); Err(e) => return Some(Err(e)), // summary
Some(()) }
self.keys().unwrap_or(None)?;
if let Err(e) = self.tick_cpu() {
return Some(Err(e));
}
self.frame()?;
Some(Ok(()))
} }
} }
fn main() -> Result<()> { fn main() -> Result<()> {
let options = Arguments::parse_args_default_or_exit(); let options = Arguments::parse_args_default_or_exit();
let state = State::new(options)?; let state = State::new(options)?;
Ok(for _ in state {}) for result in state {
if let Err(e) = result {
eprintln!("{}", e.bold().red());
break;
}
}
Ok(())
} }
/// Parses a hexadecimal string into a u16 /// Parses a hexadecimal string into a u16

View File

@ -6,10 +6,20 @@
#[cfg(test)] #[cfg(test)]
mod tests; mod tests;
pub mod disassemble; /// Disassembles Chip-8 instructions
pub trait Disassembler {
/// Disassemble a single instruction
fn once(&self, insn: u16) -> String;
}
use self::disassemble::Disassemble; pub mod disassembler;
use crate::bus::{Bus, Read, Region, Write};
use self::disassembler::{Dis, Insn};
use crate::{
bus::{Bus, Read, Region, Write},
error::Result,
};
use imperative_rs::InstructionSet;
use owo_colors::OwoColorize; use owo_colors::OwoColorize;
use rand::random; use rand::random;
use std::time::Instant; use std::time::Instant;
@ -116,6 +126,22 @@ impl ControlFlags {
} }
} }
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
struct Timers {
frame: Instant,
insn: Instant,
}
impl Default for Timers {
fn default() -> Self {
let now = Instant::now();
Self {
frame: now,
insn: now,
}
}
}
/// Represents the internal state of the CPU interpreter /// Represents the internal state of the CPU interpreter
#[derive(Clone, Debug, PartialEq)] #[derive(Clone, Debug, PartialEq)]
pub struct CPU { pub struct CPU {
@ -135,10 +161,10 @@ pub struct CPU {
// I/O // I/O
keys: [bool; 16], keys: [bool; 16],
// Execution data // Execution data
timer: Instant, timers: Timers,
cycle: usize, cycle: usize,
breakpoints: Vec<Adr>, breakpoints: Vec<Adr>,
disassembler: Disassemble, disassembler: Dis,
} }
// public interface // public interface
@ -153,7 +179,7 @@ impl CPU {
/// 0x50, // font location /// 0x50, // font location
/// 0x200, // start of program /// 0x200, // start of program
/// 0xefe, // top of stack /// 0xefe, // top of stack
/// Disassemble::default(), /// Dis::default(),
/// vec![], // Breakpoints /// vec![], // Breakpoints
/// ControlFlags::default() /// ControlFlags::default()
/// ); /// );
@ -164,7 +190,7 @@ impl CPU {
font: Adr, font: Adr,
pc: Adr, pc: Adr,
sp: Adr, sp: Adr,
disassembler: Disassemble, disassembler: Dis,
breakpoints: Vec<Adr>, breakpoints: Vec<Adr>,
flags: ControlFlags, flags: ControlFlags,
) -> Self { ) -> Self {
@ -336,7 +362,7 @@ impl CPU {
/// 0x50, /// 0x50,
/// 0x340, /// 0x340,
/// 0xefe, /// 0xefe,
/// Disassemble::default(), /// Dis::default(),
/// vec![], /// vec![],
/// ControlFlags::default() /// ControlFlags::default()
/// ); /// );
@ -368,7 +394,7 @@ impl CPU {
/// Unset a breakpoint /// Unset a breakpoint
// TODO: Unit test this // TODO: Unit test this
pub fn unset_break(&mut self, point: Adr) -> &mut Self { pub fn unset_break(&mut self, point: Adr) -> &mut Self {
fn linear_find(needle: Adr, haystack: &Vec<Adr>) -> Option<usize> { fn linear_find(needle: Adr, haystack: &[Adr]) -> Option<usize> {
for (i, v) in haystack.iter().enumerate() { for (i, v) in haystack.iter().enumerate() {
if *v == needle { if *v == needle {
return Some(i); return Some(i);
@ -376,7 +402,7 @@ impl CPU {
} }
None None
} }
if let Some(idx) = linear_find(point, &self.breakpoints) { if let Some(idx) = linear_find(point, self.breakpoints.as_slice()) {
assert_eq!(point, self.breakpoints.swap_remove(idx)); assert_eq!(point, self.breakpoints.swap_remove(idx));
} }
self self
@ -393,7 +419,7 @@ impl CPU {
///# } ///# }
/// ``` /// ```
pub fn breakpoints(&self) -> &[Adr] { pub fn breakpoints(&self) -> &[Adr] {
&self.breakpoints.as_slice() self.breakpoints.as_slice()
} }
/// Unpauses the emulator for a single tick, /// Unpauses the emulator for a single tick,
@ -412,18 +438,18 @@ impl CPU {
/// ], /// ],
/// Screen [0x0f00..0x1000], /// Screen [0x0f00..0x1000],
/// }; /// };
/// cpu.singlestep(&mut bus); /// cpu.singlestep(&mut bus)?;
/// assert_eq!(0x202, cpu.pc()); /// assert_eq!(0x202, cpu.pc());
/// assert_eq!(1, cpu.cycle()); /// assert_eq!(1, cpu.cycle());
///# Ok(()) ///# Ok(())
///# } ///# }
/// ``` /// ```
pub fn singlestep(&mut self, bus: &mut Bus) -> &mut Self { pub fn singlestep(&mut self, bus: &mut Bus) -> Result<&mut Self> {
self.flags.pause = false; self.flags.pause = false;
self.tick(bus); self.tick(bus)?;
self.flags.vbi_wait = false; self.flags.vbi_wait = false;
self.flags.pause = true; self.flags.pause = true;
self Ok(self)
} }
/// Unpauses the emulator for `steps` ticks /// Unpauses the emulator for `steps` ticks
@ -441,18 +467,18 @@ impl CPU {
/// ], /// ],
/// Screen [0x0f00..0x1000], /// Screen [0x0f00..0x1000],
/// }; /// };
/// cpu.multistep(&mut bus, 0x20); /// cpu.multistep(&mut bus, 0x20)?;
/// assert_eq!(0x202, cpu.pc()); /// assert_eq!(0x202, cpu.pc());
/// assert_eq!(0x20, cpu.cycle()); /// assert_eq!(0x20, cpu.cycle());
///# Ok(()) ///# Ok(())
///# } ///# }
/// ``` /// ```
pub fn multistep(&mut self, bus: &mut Bus, steps: usize) -> &mut Self { pub fn multistep(&mut self, bus: &mut Bus, steps: usize) -> Result<&mut Self> {
for _ in 0..steps { for _ in 0..steps {
self.tick(bus); self.tick(bus)?;
self.vertical_blank(); self.vertical_blank();
} }
self Ok(self)
} }
/// Simulates vertical blanking /// Simulates vertical blanking
@ -464,6 +490,7 @@ impl CPU {
/// - Subtracts the elapsed time in fractions of a frame /// - Subtracts the elapsed time in fractions of a frame
/// from st/dt /// from st/dt
/// - Disables framepause if the duration exceeds that of a frame /// - Disables framepause if the duration exceeds that of a frame
#[inline(always)]
pub fn vertical_blank(&mut self) -> &mut Self { pub fn vertical_blank(&mut self) -> &mut Self {
if self.flags.pause { if self.flags.pause {
return self; return self;
@ -471,16 +498,17 @@ impl CPU {
// Use a monotonic counter when testing // Use a monotonic counter when testing
if let Some(speed) = self.flags.monotonic { if let Some(speed) = self.flags.monotonic {
if self.flags.vbi_wait { if self.flags.vbi_wait {
self.flags.vbi_wait = !(self.cycle % speed == 0); self.flags.vbi_wait = self.cycle % speed != 0;
} }
self.delay -= 1.0 / speed as f64; let speed = 1.0 / speed as f64;
self.sound -= 1.0 / speed as f64; self.delay -= speed;
self.sound -= speed;
return self; return self;
}; };
// Convert the elapsed time to 60ths of a second // Convert the elapsed time to 60ths of a second
let time = self.timer.elapsed().as_secs_f64() * 60.0; let time = self.timers.frame.elapsed().as_secs_f64() * 60.0;
self.timer = Instant::now(); self.timers.frame = Instant::now();
if time > 1.0 { if time > 1.0 {
self.flags.vbi_wait = false; self.flags.vbi_wait = false;
} }
@ -506,7 +534,7 @@ impl CPU {
/// ], /// ],
/// Screen [0x0f00..0x1000], /// Screen [0x0f00..0x1000],
/// }; /// };
/// cpu.tick(&mut bus); /// cpu.tick(&mut bus)?;
/// assert_eq!(0x202, cpu.pc()); /// assert_eq!(0x202, cpu.pc());
/// assert_eq!(1, cpu.cycle()); /// assert_eq!(1, cpu.cycle());
///# Ok(()) ///# Ok(())
@ -527,162 +555,92 @@ impl CPU {
/// ], /// ],
/// Screen [0x0f00..0x1000], /// Screen [0x0f00..0x1000],
/// }; /// };
/// cpu.multistep(&mut bus, 0x10); // panics! /// cpu.tick(&mut bus)?; // panics!
///# Ok(()) ///# Ok(())
///# } ///# }
/// ``` /// ```
pub fn tick(&mut self, bus: &mut Bus) -> &mut Self { pub fn tick(&mut self, bus: &mut Bus) -> Result<&mut Self> {
// Do nothing if paused // Do nothing if paused
if self.flags.pause || self.flags.vbi_wait || self.flags.keypause { if self.flags.pause || self.flags.vbi_wait || self.flags.keypause {
// always tick in test mode // always tick in test mode
if self.flags.monotonic.is_some() { if self.flags.monotonic.is_some() {
self.cycle += 1; self.cycle += 1;
} }
return self; return Ok(self);
} }
self.cycle += 1; self.cycle += 1;
// fetch opcode // fetch opcode
let opcode: u16 = bus.read(self.pc); let opcode: &[u8; 2] = if let Some(slice) = bus.get(self.pc as usize..self.pc as usize + 2)
let pc = self.pc; {
slice.try_into()?
} else {
return Err(crate::error::Error::InvalidBusRange {
range: self.pc as usize..self.pc as usize + 2,
});
};
// DINC pc
self.pc = self.pc.wrapping_add(2);
// decode opcode
use disassemble::{a, b, i, n, x, y};
let (i, x, y, n, b, a) = (
i(opcode),
x(opcode),
y(opcode),
n(opcode),
b(opcode),
a(opcode),
);
match i {
// # Issue a system call
// |opcode| effect |
// |------|------------------------------------|
// | 00e0 | Clear screen memory to all 0 |
// | 00ee | Return from subroutine |
0x0 => match a {
0x0e0 => self.clear_screen(bus),
0x0ee => self.ret(bus),
_ => self.sys(a),
},
// | 1aaa | Sets pc to an absolute address
0x1 => self.jump(a),
// | 2aaa | Pushes pc onto the stack, then jumps to a
0x2 => self.call(a, bus),
// | 3xbb | Skips next instruction if register X == b
0x3 => self.skip_equals_immediate(x, b),
// | 4xbb | Skips next instruction if register X != b
0x4 => self.skip_not_equals_immediate(x, b),
// # Performs a register-register comparison
// |opcode| effect |
// |------|------------------------------------|
// | 9XY0 | Skip next instruction if vX == vY |
0x5 => match n {
0x0 => self.skip_equals(x, y),
_ => self.unimplemented(opcode),
},
// 6xbb: Loads immediate byte b into register vX
0x6 => self.load_immediate(x, b),
// 7xbb: Adds immediate byte b to register vX
0x7 => self.add_immediate(x, b),
// # Performs ALU operation
// |opcode| effect |
// |------|------------------------------------|
// | 8xy0 | Y = X |
// | 8xy1 | X = X | Y |
// | 8xy2 | X = X & Y |
// | 8xy3 | X = X ^ Y |
// | 8xy4 | X = X + Y; Set vF=carry |
// | 8xy5 | X = X - Y; Set vF=carry |
// | 8xy6 | X = X >> 1 |
// | 8xy7 | X = Y - X; Set vF=carry |
// | 8xyE | X = X << 1 |
0x8 => match n {
0x0 => self.load(x, y),
0x1 => self.or(x, y),
0x2 => self.and(x, y),
0x3 => self.xor(x, y),
0x4 => self.add(x, y),
0x5 => self.sub(x, y),
0x6 => self.shift_right(x, y),
0x7 => self.backwards_sub(x, y),
0xE => self.shift_left(x, y),
_ => self.unimplemented(opcode),
},
// # Performs a register-register comparison
// |opcode| effect |
// |------|------------------------------------|
// | 9XY0 | Skip next instruction if vX != vY |
0x9 => match n {
0 => self.skip_not_equals(x, y),
_ => self.unimplemented(opcode),
},
// Aaaa: Load address #a into register I
0xa => self.load_i_immediate(a),
// Baaa: Jump to &adr + v0
0xb => self.jump_indexed(a),
// Cxbb: Stores a random number + the provided byte into vX
0xc => self.rand(x, b),
// Dxyn: Draws n-byte sprite to the screen at coordinates (vX, vY)
0xd => self.draw(x, y, n, bus),
// # Skips instruction on value of keypress
// |opcode| effect |
// |------|------------------------------------|
// | eX9e | Skip next instruction if key == vX |
// | eXa1 | Skip next instruction if key != vX |
0xe => match b {
0x9e => self.skip_key_equals(x),
0xa1 => self.skip_key_not_equals(x),
_ => self.unimplemented(opcode),
},
// # Performs IO
// |opcode| effect |
// |------|------------------------------------|
// | fX07 | Set vX to value in delay timer |
// | fX0a | Wait for input, store in vX m |
// | fX15 | Set sound timer to the value in vX |
// | fX18 | set delay timer to the value in vX |
// | fX1e | Add x to I |
// | fX29 | Load sprite for character x into I |
// | fX33 | BCD convert X into I[0..3] |
// | fX55 | DMA Stor from I to registers 0..X |
// | fX65 | DMA Load from I to registers 0..X |
0xf => match b {
0x07 => self.load_delay_timer(x),
0x0A => self.wait_for_key(x),
0x15 => self.store_delay_timer(x),
0x18 => self.store_sound_timer(x),
0x1E => self.add_i(x),
0x29 => self.load_sprite(x),
0x33 => self.bcd_convert(x, bus),
0x55 => self.store_dma(x, bus),
0x65 => self.load_dma(x, bus),
_ => self.unimplemented(opcode),
},
_ => unreachable!("Extracted nibble from byte, got >nibble?"),
}
let elapsed = self.timer.elapsed();
// Print opcode disassembly: // Print opcode disassembly:
if self.flags.debug { if self.flags.debug {
std::println!( println!("{:?}", self.timers.insn.elapsed().bright_black());
"{:3} {:03x}: {:<36}{:?}", self.timers.insn = Instant::now();
std::print!(
"{:3} {:03x}: {:<36}",
self.cycle.bright_black(), self.cycle.bright_black(),
pc, self.pc,
self.disassembler.instruction(opcode), self.disassembler.once(u16::from_be_bytes(*opcode))
elapsed.dimmed()
); );
} }
// decode opcode
if let Ok((inc, insn)) = Insn::decode(opcode) {
self.pc = self.pc.wrapping_add(inc as u16);
match insn {
Insn::cls => self.clear_screen(bus),
Insn::ret => self.ret(bus),
Insn::jmp { A } => self.jump(A),
Insn::call { A } => self.call(A, bus),
Insn::seb { B, x } => self.skip_equals_immediate(x, B),
Insn::sneb { B, x } => self.skip_not_equals_immediate(x, B),
Insn::se { y, x } => self.skip_equals(x, y),
Insn::movb { B, x } => self.load_immediate(x, B),
Insn::addb { B, x } => self.add_immediate(x, B),
Insn::mov { x, y } => self.load(x, y),
Insn::or { y, x } => self.or(x, y),
Insn::and { y, x } => self.and(x, y),
Insn::xor { y, x } => self.xor(x, y),
Insn::add { y, x } => self.add(x, y),
Insn::sub { y, x } => self.sub(x, y),
Insn::shr { y, x } => self.shift_right(x, y),
Insn::bsub { y, x } => self.backwards_sub(x, y),
Insn::shl { y, x } => self.shift_left(x, y),
Insn::sne { y, x } => self.skip_not_equals(x, y),
Insn::movI { A } => self.load_i_immediate(A),
Insn::jmpr { A } => self.jump_indexed(A),
Insn::rand { B, x } => self.rand(x, B),
Insn::draw { x, y, n } => self.draw(x, y, n, bus),
Insn::sek { x } => self.skip_key_equals(x),
Insn::snek { x } => self.skip_key_not_equals(x),
Insn::getdt { x } => self.load_delay_timer(x),
Insn::waitk { x } => self.wait_for_key(x),
Insn::setdt { x } => self.store_delay_timer(x),
Insn::movst { x } => self.store_sound_timer(x),
Insn::addI { x } => self.add_i(x),
Insn::font { x } => self.load_sprite(x),
Insn::bcd { x } => self.bcd_convert(x, bus),
Insn::dmao { x } => self.store_dma(x, bus),
Insn::dmai { x } => self.load_dma(x, bus),
}
} else {
return Err(crate::error::Error::UnimplementedInstruction {
word: u16::from_be_bytes(*opcode),
});
}
// process breakpoints // process breakpoints
if self.breakpoints.contains(&self.pc) { if !self.breakpoints.is_empty() && self.breakpoints.contains(&self.pc) {
self.flags.pause = true; self.flags.pause = true;
} }
self Ok(self)
} }
/// Dumps the current state of all CPU registers, and the cycle count /// Dumps the current state of all CPU registers, and the cycle count
@ -763,9 +721,9 @@ impl Default for CPU {
debug: true, debug: true,
..Default::default() ..Default::default()
}, },
timer: Instant::now(), timers: Default::default(),
breakpoints: vec![], breakpoints: vec![],
disassembler: Disassemble::default(), disassembler: Dis::default(),
} }
} }
} }
@ -780,18 +738,8 @@ impl Default for CPU {
// | 00e0 | Clear screen memory to all 0 | // | 00e0 | Clear screen memory to all 0 |
// | 00ee | Return from subroutine | // | 00ee | Return from subroutine |
impl CPU { impl CPU {
/// Unused instructions
#[inline]
fn unimplemented(&self, opcode: u16) {
unimplemented!("Opcode: {opcode:04x}")
}
/// 0aaa: Handles a "machine language function call" (lmao)
#[inline]
fn sys(&mut self, a: Adr) {
unimplemented!("SYS\t{a:03x}");
}
/// 00e0: Clears the screen memory to 0 /// 00e0: Clears the screen memory to 0
#[inline] #[inline(always)]
fn clear_screen(&mut self, bus: &mut Bus) { fn clear_screen(&mut self, bus: &mut Bus) {
if let Some(screen) = bus.get_region_mut(Region::Screen) { if let Some(screen) = bus.get_region_mut(Region::Screen) {
for byte in screen { for byte in screen {
@ -800,7 +748,7 @@ impl CPU {
} }
} }
/// 00ee: Returns from subroutine /// 00ee: Returns from subroutine
#[inline] #[inline(always)]
fn ret(&mut self, bus: &impl Read<u16>) { fn ret(&mut self, bus: &impl Read<u16>) {
self.sp = self.sp.wrapping_add(2); self.sp = self.sp.wrapping_add(2);
self.pc = bus.read(self.sp); self.pc = bus.read(self.sp);
@ -810,7 +758,7 @@ impl CPU {
// | 1aaa | Sets pc to an absolute address // | 1aaa | Sets pc to an absolute address
impl CPU { impl CPU {
/// 1aaa: Sets the program counter to an absolute address /// 1aaa: Sets the program counter to an absolute address
#[inline] #[inline(always)]
fn jump(&mut self, a: Adr) { fn jump(&mut self, a: Adr) {
// jump to self == halt // jump to self == halt
if a.wrapping_add(2) == self.pc { if a.wrapping_add(2) == self.pc {
@ -823,7 +771,7 @@ impl CPU {
// | 2aaa | Pushes pc onto the stack, then jumps to a // | 2aaa | Pushes pc onto the stack, then jumps to a
impl CPU { impl CPU {
/// 2aaa: Pushes pc onto the stack, then jumps to a /// 2aaa: Pushes pc onto the stack, then jumps to a
#[inline] #[inline(always)]
fn call(&mut self, a: Adr, bus: &mut impl Write<u16>) { fn call(&mut self, a: Adr, bus: &mut impl Write<u16>) {
bus.write(self.sp, self.pc); bus.write(self.sp, self.pc);
self.sp = self.sp.wrapping_sub(2); self.sp = self.sp.wrapping_sub(2);
@ -834,7 +782,7 @@ impl CPU {
// | 3xbb | Skips next instruction if register X == b // | 3xbb | Skips next instruction if register X == b
impl CPU { impl CPU {
/// 3xbb: Skips the next instruction if register X == b /// 3xbb: Skips the next instruction if register X == b
#[inline] #[inline(always)]
fn skip_equals_immediate(&mut self, x: Reg, b: u8) { fn skip_equals_immediate(&mut self, x: Reg, b: u8) {
if self.v[x] == b { if self.v[x] == b {
self.pc = self.pc.wrapping_add(2); self.pc = self.pc.wrapping_add(2);
@ -845,7 +793,7 @@ impl CPU {
// | 4xbb | Skips next instruction if register X != b // | 4xbb | Skips next instruction if register X != b
impl CPU { impl CPU {
/// 4xbb: Skips the next instruction if register X != b /// 4xbb: Skips the next instruction if register X != b
#[inline] #[inline(always)]
fn skip_not_equals_immediate(&mut self, x: Reg, b: u8) { fn skip_not_equals_immediate(&mut self, x: Reg, b: u8) {
if self.v[x] != b { if self.v[x] != b {
self.pc = self.pc.wrapping_add(2); self.pc = self.pc.wrapping_add(2);
@ -860,7 +808,7 @@ impl CPU {
// | 5XY0 | Skip next instruction if vX == vY | // | 5XY0 | Skip next instruction if vX == vY |
impl CPU { impl CPU {
/// 5xy0: Skips the next instruction if register X != register Y /// 5xy0: Skips the next instruction if register X != register Y
#[inline] #[inline(always)]
fn skip_equals(&mut self, x: Reg, y: Reg) { fn skip_equals(&mut self, x: Reg, y: Reg) {
if self.v[x] == self.v[y] { if self.v[x] == self.v[y] {
self.pc = self.pc.wrapping_add(2); self.pc = self.pc.wrapping_add(2);
@ -871,7 +819,7 @@ impl CPU {
// | 6xbb | Loads immediate byte b into register vX // | 6xbb | Loads immediate byte b into register vX
impl CPU { impl CPU {
/// 6xbb: Loads immediate byte b into register vX /// 6xbb: Loads immediate byte b into register vX
#[inline] #[inline(always)]
fn load_immediate(&mut self, x: Reg, b: u8) { fn load_immediate(&mut self, x: Reg, b: u8) {
self.v[x] = b; self.v[x] = b;
} }
@ -880,7 +828,7 @@ impl CPU {
// | 7xbb | Adds immediate byte b to register vX // | 7xbb | Adds immediate byte b to register vX
impl CPU { impl CPU {
/// 7xbb: Adds immediate byte b to register vX /// 7xbb: Adds immediate byte b to register vX
#[inline] #[inline(always)]
fn add_immediate(&mut self, x: Reg, b: u8) { fn add_immediate(&mut self, x: Reg, b: u8) {
self.v[x] = self.v[x].wrapping_add(b); self.v[x] = self.v[x].wrapping_add(b);
} }
@ -901,7 +849,7 @@ impl CPU {
// | 8xyE | X = X << 1 | // | 8xyE | X = X << 1 |
impl CPU { impl CPU {
/// 8xy0: Loads the value of y into x /// 8xy0: Loads the value of y into x
#[inline] #[inline(always)]
fn load(&mut self, x: Reg, y: Reg) { fn load(&mut self, x: Reg, y: Reg) {
self.v[x] = self.v[y]; self.v[x] = self.v[y];
} }
@ -909,7 +857,7 @@ impl CPU {
/// ///
/// # Quirk /// # Quirk
/// The original chip-8 interpreter will clobber vF for any 8-series instruction /// The original chip-8 interpreter will clobber vF for any 8-series instruction
#[inline] #[inline(always)]
fn or(&mut self, x: Reg, y: Reg) { fn or(&mut self, x: Reg, y: Reg) {
self.v[x] |= self.v[y]; self.v[x] |= self.v[y];
if self.flags.quirks.bin_ops { if self.flags.quirks.bin_ops {
@ -920,7 +868,7 @@ impl CPU {
/// ///
/// # Quirk /// # Quirk
/// The original chip-8 interpreter will clobber vF for any 8-series instruction /// The original chip-8 interpreter will clobber vF for any 8-series instruction
#[inline] #[inline(always)]
fn and(&mut self, x: Reg, y: Reg) { fn and(&mut self, x: Reg, y: Reg) {
self.v[x] &= self.v[y]; self.v[x] &= self.v[y];
if self.flags.quirks.bin_ops { if self.flags.quirks.bin_ops {
@ -931,7 +879,7 @@ impl CPU {
/// ///
/// # Quirk /// # Quirk
/// The original chip-8 interpreter will clobber vF for any 8-series instruction /// The original chip-8 interpreter will clobber vF for any 8-series instruction
#[inline] #[inline(always)]
fn xor(&mut self, x: Reg, y: Reg) { fn xor(&mut self, x: Reg, y: Reg) {
self.v[x] ^= self.v[y]; self.v[x] ^= self.v[y];
if self.flags.quirks.bin_ops { if self.flags.quirks.bin_ops {
@ -939,14 +887,14 @@ impl CPU {
} }
} }
/// 8xy4: Performs addition of vX and vY, and stores the result in vX /// 8xy4: Performs addition of vX and vY, and stores the result in vX
#[inline] #[inline(always)]
fn add(&mut self, x: Reg, y: Reg) { fn add(&mut self, x: Reg, y: Reg) {
let carry; let carry;
(self.v[x], carry) = self.v[x].overflowing_add(self.v[y]); (self.v[x], carry) = self.v[x].overflowing_add(self.v[y]);
self.v[0xf] = carry.into(); self.v[0xf] = carry.into();
} }
/// 8xy5: Performs subtraction of vX and vY, and stores the result in vX /// 8xy5: Performs subtraction of vX and vY, and stores the result in vX
#[inline] #[inline(always)]
fn sub(&mut self, x: Reg, y: Reg) { fn sub(&mut self, x: Reg, y: Reg) {
let carry; let carry;
(self.v[x], carry) = self.v[x].overflowing_sub(self.v[y]); (self.v[x], carry) = self.v[x].overflowing_sub(self.v[y]);
@ -956,7 +904,7 @@ impl CPU {
/// ///
/// # Quirk /// # Quirk
/// On the original chip-8 interpreter, this shifts vY and stores the result in vX /// On the original chip-8 interpreter, this shifts vY and stores the result in vX
#[inline] #[inline(always)]
fn shift_right(&mut self, x: Reg, y: Reg) { fn shift_right(&mut self, x: Reg, y: Reg) {
let src: Reg = if self.flags.quirks.shift { y } else { x }; let src: Reg = if self.flags.quirks.shift { y } else { x };
let shift_out = self.v[src] & 1; let shift_out = self.v[src] & 1;
@ -964,7 +912,7 @@ impl CPU {
self.v[0xf] = shift_out; self.v[0xf] = shift_out;
} }
/// 8xy7: Performs subtraction of vY and vX, and stores the result in vX /// 8xy7: Performs subtraction of vY and vX, and stores the result in vX
#[inline] #[inline(always)]
fn backwards_sub(&mut self, x: Reg, y: Reg) { fn backwards_sub(&mut self, x: Reg, y: Reg) {
let carry; let carry;
(self.v[x], carry) = self.v[y].overflowing_sub(self.v[x]); (self.v[x], carry) = self.v[y].overflowing_sub(self.v[x]);
@ -975,7 +923,7 @@ impl CPU {
/// # Quirk /// # Quirk
/// On the original chip-8 interpreter, this would perform the operation on vY /// On the original chip-8 interpreter, this would perform the operation on vY
/// and store the result in vX. This behavior was left out, for now. /// and store the result in vX. This behavior was left out, for now.
#[inline] #[inline(always)]
fn shift_left(&mut self, x: Reg, y: Reg) { fn shift_left(&mut self, x: Reg, y: Reg) {
let src: Reg = if self.flags.quirks.shift { y } else { x }; let src: Reg = if self.flags.quirks.shift { y } else { x };
let shift_out: u8 = self.v[src] >> 7; let shift_out: u8 = self.v[src] >> 7;
@ -991,7 +939,7 @@ impl CPU {
// | 9XY0 | Skip next instruction if vX != vY | // | 9XY0 | Skip next instruction if vX != vY |
impl CPU { impl CPU {
/// 9xy0: Skip next instruction if X != y /// 9xy0: Skip next instruction if X != y
#[inline] #[inline(always)]
fn skip_not_equals(&mut self, x: Reg, y: Reg) { fn skip_not_equals(&mut self, x: Reg, y: Reg) {
if self.v[x] != self.v[y] { if self.v[x] != self.v[y] {
self.pc = self.pc.wrapping_add(2); self.pc = self.pc.wrapping_add(2);
@ -1002,7 +950,7 @@ impl CPU {
// | Aaaa | Load address #a into register I // | Aaaa | Load address #a into register I
impl CPU { impl CPU {
/// Aadr: Load address #adr into register I /// Aadr: Load address #adr into register I
#[inline] #[inline(always)]
fn load_i_immediate(&mut self, a: Adr) { fn load_i_immediate(&mut self, a: Adr) {
self.i = a; self.i = a;
} }
@ -1014,7 +962,7 @@ impl CPU {
/// ///
/// Quirk: /// Quirk:
/// On the Super-Chip, this does stupid shit /// On the Super-Chip, this does stupid shit
#[inline] #[inline(always)]
fn jump_indexed(&mut self, a: Adr) { fn jump_indexed(&mut self, a: Adr) {
let reg = if self.flags.quirks.stupid_jumps { let reg = if self.flags.quirks.stupid_jumps {
a as usize >> 8 a as usize >> 8
@ -1025,10 +973,10 @@ impl CPU {
} }
} }
// | Cxbb | Stores a random number + the provided byte into vX // | Cxbb | Stores a random number & the provided byte into vX
impl CPU { impl CPU {
/// Cxbb: Stores a random number & the provided byte into vX /// Cxbb: Stores a random number & the provided byte into vX
#[inline] #[inline(always)]
fn rand(&mut self, x: Reg, b: u8) { fn rand(&mut self, x: Reg, b: u8) {
self.v[x] = random::<u8>() & b; self.v[x] = random::<u8>() & b;
} }
@ -1040,6 +988,7 @@ impl CPU {
/// ///
/// # Quirk /// # Quirk
/// On the original chip-8 interpreter, this will wait for a VBI /// On the original chip-8 interpreter, this will wait for a VBI
#[inline(always)]
fn draw(&mut self, x: Reg, y: Reg, n: Nib, bus: &mut Bus) { fn draw(&mut self, x: Reg, y: Reg, n: Nib, bus: &mut Bus) {
let (x, y) = (self.v[x] as u16 % 64, self.v[y] as u16 % 32); let (x, y) = (self.v[x] as u16 % 64, self.v[y] as u16 % 32);
if self.flags.quirks.draw_wait { if self.flags.quirks.draw_wait {
@ -1054,7 +1003,7 @@ impl CPU {
let addr = (y + byte) * 8 + (x & 0x3f) / 8 + self.screen; let addr = (y + byte) * 8 + (x & 0x3f) / 8 + self.screen;
// Read a byte of sprite data into a u16, and shift it x % 8 bits // Read a byte of sprite data into a u16, and shift it x % 8 bits
let sprite: u8 = bus.read(self.i + byte); let sprite: u8 = bus.read(self.i + byte);
let sprite = (sprite as u16) << 8 - (x & 7) & if x % 64 > 56 { 0xff00 } else { 0xffff }; let sprite = (sprite as u16) << (8 - (x & 7)) & if x % 64 > 56 { 0xff00 } else { 0xffff };
// Read a u16 from the bus containing the two bytes which might need to be updated // Read a u16 from the bus containing the two bytes which might need to be updated
let mut screen: u16 = bus.read(addr); let mut screen: u16 = bus.read(addr);
// Save the bits-toggled-off flag if necessary // Save the bits-toggled-off flag if necessary
@ -1073,19 +1022,19 @@ impl CPU {
// //
// |opcode| effect | // |opcode| effect |
// |------|------------------------------------| // |------|------------------------------------|
// | eX9e | Skip next instruction if key == #X | // | eX9e | Skip next instruction if key == vX |
// | eXa1 | Skip next instruction if key != #X | // | eXa1 | Skip next instruction if key != vX |
impl CPU { impl CPU {
/// Ex9E: Skip next instruction if key == #X /// Ex9E: Skip next instruction if key == vX
#[inline] #[inline(always)]
fn skip_key_equals(&mut self, x: Reg) { fn skip_key_equals(&mut self, x: Reg) {
let x = self.v[x] as usize; let x = self.v[x] as usize;
if self.keys[x] { if self.keys[x] {
self.pc += 2; self.pc += 2;
} }
} }
/// ExaE: Skip next instruction if key != #X /// ExaE: Skip next instruction if key != vX
#[inline] #[inline(always)]
fn skip_key_not_equals(&mut self, x: Reg) { fn skip_key_not_equals(&mut self, x: Reg) {
let x = self.v[x] as usize; let x = self.v[x] as usize;
if !self.keys[x] { if !self.keys[x] {
@ -1099,25 +1048,25 @@ impl CPU {
// |opcode| effect | // |opcode| effect |
// |------|------------------------------------| // |------|------------------------------------|
// | fX07 | Set vX to value in delay timer | // | fX07 | Set vX to value in delay timer |
// | fX0a | Wait for input, store in vX m | // | fX0a | Wait for input, store key in vX |
// | fX15 | Set sound timer to the value in vX | // | fX15 | Set sound timer to the value in vX |
// | fX18 | set delay timer to the value in vX | // | fX18 | set delay timer to the value in vX |
// | fX1e | Add x to I | // | fX1e | Add vX to I |
// | fX29 | Load sprite for character x into I | // | fX29 | Load sprite for character x into I |
// | fX33 | BCD convert X into I[0..3] | // | fX33 | BCD convert X into I[0..3] |
// | fX55 | DMA Stor from I to registers 0..X | // | fX55 | DMA Stor from I to registers 0..=X |
// | fX65 | DMA Load from I to registers 0..X | // | fX65 | DMA Load from I to registers 0..=X |
impl CPU { impl CPU {
/// Fx07: Get the current DT, and put it in vX /// Fx07: Get the current DT, and put it in vX
/// ```py /// ```py
/// vX = DT /// vX = DT
/// ``` /// ```
#[inline] #[inline(always)]
fn load_delay_timer(&mut self, x: Reg) { fn load_delay_timer(&mut self, x: Reg) {
self.v[x] = self.delay as u8; self.v[x] = self.delay as u8;
} }
/// Fx0A: Wait for key, then vX = K /// Fx0A: Wait for key, then vX = K
#[inline] #[inline(always)]
fn wait_for_key(&mut self, x: Reg) { fn wait_for_key(&mut self, x: Reg) {
if let Some(key) = self.flags.lastkey { if let Some(key) = self.flags.lastkey {
self.v[x] = key as u8; self.v[x] = key as u8;
@ -1131,7 +1080,7 @@ impl CPU {
/// ```py /// ```py
/// DT = vX /// DT = vX
/// ``` /// ```
#[inline] #[inline(always)]
fn store_delay_timer(&mut self, x: Reg) { fn store_delay_timer(&mut self, x: Reg) {
self.delay = self.v[x] as f64; self.delay = self.v[x] as f64;
} }
@ -1139,7 +1088,7 @@ impl CPU {
/// ```py /// ```py
/// ST = vX; /// ST = vX;
/// ``` /// ```
#[inline] #[inline(always)]
fn store_sound_timer(&mut self, x: Reg) { fn store_sound_timer(&mut self, x: Reg) {
self.sound = self.v[x] as f64; self.sound = self.v[x] as f64;
} }
@ -1147,7 +1096,7 @@ impl CPU {
/// ```py /// ```py
/// I += vX; /// I += vX;
/// ``` /// ```
#[inline] #[inline(always)]
fn add_i(&mut self, x: Reg) { fn add_i(&mut self, x: Reg) {
self.i += self.v[x] as u16; self.i += self.v[x] as u16;
} }
@ -1155,24 +1104,24 @@ impl CPU {
/// ```py /// ```py
/// I = sprite(X); /// I = sprite(X);
/// ``` /// ```
#[inline] #[inline(always)]
fn load_sprite(&mut self, x: Reg) { fn load_sprite(&mut self, x: Reg) {
self.i = self.font + (5 * (self.v[x] as Adr % 0x10)); self.i = self.font + (5 * (self.v[x] as Adr % 0x10));
} }
/// Fx33: BCD convert X into I`[0..3]` /// Fx33: BCD convert X into I`[0..3]`
#[inline] #[inline(always)]
fn bcd_convert(&mut self, x: Reg, bus: &mut Bus) { fn bcd_convert(&mut self, x: Reg, bus: &mut Bus) {
let x = self.v[x]; let x = self.v[x];
bus.write(self.i.wrapping_add(2), x % 10); bus.write(self.i.wrapping_add(2), x % 10);
bus.write(self.i.wrapping_add(1), x / 10 % 10); bus.write(self.i.wrapping_add(1), x / 10 % 10);
bus.write(self.i, x / 100 % 10); bus.write(self.i, x / 100 % 10);
} }
/// Fx55: DMA Stor from I to registers 0..X /// Fx55: DMA Stor from I to registers 0..=X
/// ///
/// # Quirk /// # Quirk
/// The original chip-8 interpreter uses I to directly index memory, /// The original chip-8 interpreter uses I to directly index memory,
/// with the side effect of leaving I as I+X+1 after the transfer is done. /// with the side effect of leaving I as I+X+1 after the transfer is done.
#[inline] #[inline(always)]
fn store_dma(&mut self, x: Reg, bus: &mut Bus) { fn store_dma(&mut self, x: Reg, bus: &mut Bus) {
let i = self.i as usize; let i = self.i as usize;
for (reg, value) in bus for (reg, value) in bus
@ -1187,16 +1136,16 @@ impl CPU {
self.i += x as Adr + 1; self.i += x as Adr + 1;
} }
} }
/// Fx65: DMA Load from I to registers 0..X /// Fx65: DMA Load from I to registers 0..=X
/// ///
/// # Quirk /// # Quirk
/// The original chip-8 interpreter uses I to directly index memory, /// The original chip-8 interpreter uses I to directly index memory,
/// with the side effect of leaving I as I+X+1 after the transfer is done. /// with the side effect of leaving I as I+X+1 after the transfer is done.
#[inline] #[inline(always)]
fn load_dma(&mut self, x: Reg, bus: &mut Bus) { fn load_dma(&mut self, x: Reg, bus: &mut Bus) {
let i = self.i as usize; let i = self.i as usize;
for (reg, value) in bus for (reg, value) in bus
.get(i + 0..=i + x) .get(i..=i + x)
.unwrap_or_default() .unwrap_or_default()
.iter() .iter()
.enumerate() .enumerate()

View File

@ -1,417 +0,0 @@
// (c) 2023 John A. Breaux
// This code is licensed under MIT license (see LICENSE.txt for details)
//! A disassembler for Chip-8 opcodes
use super::{Adr, Nib, Reg};
use owo_colors::{OwoColorize, Style};
type Ins = Nib;
/// Extracts the I nibble of an IXYN instruction
#[inline]
pub fn i(ins: u16) -> Ins {
(ins >> 12 & 0xf) as Ins
}
/// Extracts the X nibble of an IXYN instruction
#[inline]
pub fn x(ins: u16) -> Reg {
(ins >> 8 & 0xf) as Reg
}
/// Extracts the Y nibble of an IXYN instruction
#[inline]
pub fn y(ins: u16) -> Reg {
(ins >> 4 & 0xf) as Reg
}
/// Extracts the N nibble of an IXYN instruction
#[inline]
pub fn n(ins: u16) -> Nib {
(ins & 0xf) as Nib
}
/// Extracts the B byte of an IXBB instruction
#[inline]
pub fn b(ins: u16) -> u8 {
(ins & 0xff) as u8
}
/// Extracts the ADR trinibble of an IADR instruction
#[inline]
pub fn a(ins: u16) -> Adr {
ins & 0x0fff
}
/// Disassembles Chip-8 instructions, printing them in the provided [owo_colors::Style]s
#[derive(Clone, Debug, PartialEq)]
pub struct Disassemble {
invalid: Style,
normal: Style,
}
impl Default for Disassemble {
fn default() -> Self {
Disassemble::builder().build()
}
}
// Public API
impl Disassemble {
/// Returns a new Disassemble with the provided Styles
pub fn new(invalid: Style, normal: Style) -> Disassemble {
Disassemble { invalid, normal }
}
/// Creates a [DisassembleBuilder], for partial configuration
pub fn builder() -> DisassembleBuilder {
DisassembleBuilder::default()
}
/// Disassemble a single instruction
pub fn instruction(&self, opcode: u16) -> String {
let (i, x, y, n, b, a) = (
i(opcode),
x(opcode),
y(opcode),
n(opcode),
b(opcode),
a(opcode),
);
match i {
// # Issue a system call
// |opcode| effect |
// |------|------------------------------------|
// | 00e0 | Clear screen memory to all 0 |
// | 00ee | Return from subroutine |
0x0 => match a {
0x0e0 => self.clear_screen(),
0x0ee => self.ret(),
_ => self.sys(a),
},
// | 1aaa | Sets pc to an absolute address
0x1 => self.jump(a),
// | 2aaa | Pushes pc onto the stack, then jumps to a
0x2 => self.call(a),
// | 3xbb | Skips next instruction if register X == b
0x3 => self.skip_equals_immediate(x, b),
// | 4xbb | Skips next instruction if register X != b
0x4 => self.skip_not_equals_immediate(x, b),
// # Performs a register-register comparison
// |opcode| effect |
// |------|------------------------------------|
// | 9XY0 | Skip next instruction if vX == vY |
0x5 => match n {
0x0 => self.skip_equals(x, y),
_ => self.unimplemented(opcode),
},
// 6xbb: Loads immediate byte b into register vX
0x6 => self.load_immediate(x, b),
// 7xbb: Adds immediate byte b to register vX
0x7 => self.add_immediate(x, b),
// # Performs ALU operation
// |opcode| effect |
// |------|------------------------------------|
// | 8xy0 | Y = X |
// | 8xy1 | X = X | Y |
// | 8xy2 | X = X & Y |
// | 8xy3 | X = X ^ Y |
// | 8xy4 | X = X + Y; Set vF=carry |
// | 8xy5 | X = X - Y; Set vF=carry |
// | 8xy6 | X = X >> 1 |
// | 8xy7 | X = Y - X; Set vF=carry |
// | 8xyE | X = X << 1 |
0x8 => match n {
0x0 => self.load(x, y),
0x1 => self.or(x, y),
0x2 => self.and(x, y),
0x3 => self.xor(x, y),
0x4 => self.add(x, y),
0x5 => self.sub(x, y),
0x6 => self.shift_right(x),
0x7 => self.backwards_sub(x, y),
0xE => self.shift_left(x),
_ => self.unimplemented(opcode),
},
// # Performs a register-register comparison
// |opcode| effect |
// |------|------------------------------------|
// | 9XY0 | Skip next instruction if vX != vY |
0x9 => match n {
0 => self.skip_not_equals(x, y),
_ => self.unimplemented(opcode),
},
// Aaaa: Load address #a into register I
0xa => self.load_i_immediate(a),
// Baaa: Jump to &adr + v0
0xb => self.jump_indexed(a),
// Cxbb: Stores a random number + the provided byte into vX
0xc => self.rand(x, b),
// Dxyn: Draws n-byte sprite to the screen at coordinates (vX, vY)
0xd => self.draw(x, y, n),
// # Skips instruction on value of keypress
// |opcode| effect |
// |------|------------------------------------|
// | eX9e | Skip next instruction if key == #X |
// | eXa1 | Skip next instruction if key != #X |
0xe => match b {
0x9e => self.skip_key_equals(x),
0xa1 => self.skip_key_not_equals(x),
_ => self.unimplemented(opcode),
},
// # Performs IO
// |opcode| effect |
// |------|------------------------------------|
// | fX07 | Set vX to value in delay timer |
// | fX0a | Wait for input, store in vX m |
// | fX15 | Set sound timer to the value in vX |
// | fX18 | set delay timer to the value in vX |
// | fX1e | Add x to I |
// | fX29 | Load sprite for character x into I |
// | fX33 | BCD convert X into I[0..3] |
// | fX55 | DMA Stor from I to registers 0..X |
// | fX65 | DMA Load from I to registers 0..X |
0xf => match b {
0x07 => self.load_delay_timer(x),
0x0A => self.wait_for_key(x),
0x15 => self.store_delay_timer(x),
0x18 => self.store_sound_timer(x),
0x1E => self.add_to_indirect(x),
0x29 => self.load_sprite(x),
0x33 => self.bcd_convert(x),
0x55 => self.store_dma(x),
0x65 => self.load_dma(x),
_ => self.unimplemented(opcode),
},
_ => unreachable!("Extracted nibble from byte, got >nibble?"),
}
}
}
// Private api
impl Disassemble {
/// Unused instructions
fn unimplemented(&self, opcode: u16) -> String {
format!("inval {opcode:04x}")
.style(self.invalid)
.to_string()
}
/// `0aaa`: Handles a "machine language function call" (lmao)
pub fn sys(&self, a: Adr) -> String {
format!("sysc {a:03x}").style(self.invalid).to_string()
}
/// `00e0`: Clears the screen memory to 0
pub fn clear_screen(&self) -> String {
"cls ".style(self.normal).to_string()
}
/// `00ee`: Returns from subroutine
pub fn ret(&self) -> String {
"ret ".style(self.normal).to_string()
}
/// `1aaa`: Sets the program counter to an absolute address
pub fn jump(&self, a: Adr) -> String {
format!("jmp {a:03x}").style(self.normal).to_string()
}
/// `2aaa`: Pushes pc onto the stack, then jumps to a
pub fn call(&self, a: Adr) -> String {
format!("call {a:03x}").style(self.normal).to_string()
}
/// `3xbb`: Skips the next instruction if register X == b
pub fn skip_equals_immediate(&self, x: Reg, b: u8) -> String {
format!("se #{b:02x}, v{x:X}")
.style(self.normal)
.to_string()
}
/// `4xbb`: Skips the next instruction if register X != b
pub fn skip_not_equals_immediate(&self, x: Reg, b: u8) -> String {
format!("sne #{b:02x}, v{x:X}")
.style(self.normal)
.to_string()
}
/// `5xy0`: Skips the next instruction if register X != register Y
pub fn skip_equals(&self, x: Reg, y: Reg) -> String {
format!("se v{x:X}, v{y:X}")
.style(self.normal)
.to_string()
}
/// `6xbb`: Loads immediate byte b into register vX
pub fn load_immediate(&self, x: Reg, b: u8) -> String {
format!("mov #{b:02x}, v{x:X}")
.style(self.normal)
.to_string()
}
/// `7xbb`: Adds immediate byte b to register vX
pub fn add_immediate(&self, x: Reg, b: u8) -> String {
format!("add #{b:02x}, v{x:X}")
.style(self.normal)
.to_string()
}
/// `8xy0`: Loads the value of y into x
pub fn load(&self, x: Reg, y: Reg) -> String {
format!("mov v{y:X}, v{x:X}")
.style(self.normal)
.to_string()
}
/// `8xy1`: Performs bitwise or of vX and vY, and stores the result in vX
pub fn or(&self, x: Reg, y: Reg) -> String {
format!("or v{y:X}, v{x:X}")
.style(self.normal)
.to_string()
}
/// `8xy2`: Performs bitwise and of vX and vY, and stores the result in vX
pub fn and(&self, x: Reg, y: Reg) -> String {
format!("and v{y:X}, v{x:X}")
.style(self.normal)
.to_string()
}
/// `8xy3`: Performs bitwise xor of vX and vY, and stores the result in vX
pub fn xor(&self, x: Reg, y: Reg) -> String {
format!("xor v{y:X}, v{x:X}")
.style(self.normal)
.to_string()
}
/// `8xy4`: Performs addition of vX and vY, and stores the result in vX
pub fn add(&self, x: Reg, y: Reg) -> String {
format!("add v{y:X}, v{x:X}")
.style(self.normal)
.to_string()
}
/// `8xy5`: Performs subtraction of vX and vY, and stores the result in vX
pub fn sub(&self, x: Reg, y: Reg) -> String {
format!("sub v{y:X}, v{x:X}")
.style(self.normal)
.to_string()
}
/// `8xy6`: Performs bitwise right shift of vX
pub fn shift_right(&self, x: Reg) -> String {
format!("shr v{x:X}").style(self.normal).to_string()
}
/// `8xy7`: Performs subtraction of vY and vX, and stores the result in vX
pub fn backwards_sub(&self, x: Reg, y: Reg) -> String {
format!("bsub v{y:X}, v{x:X}")
.style(self.normal)
.to_string()
}
/// 8X_E: Performs bitwise left shift of vX
pub fn shift_left(&self, x: Reg) -> String {
format!("shl v{x:X}").style(self.normal).to_string()
}
/// `9xy0`: Skip next instruction if X != y
pub fn skip_not_equals(&self, x: Reg, y: Reg) -> String {
format!("sne v{x:X}, v{y:X}")
.style(self.normal)
.to_string()
}
/// Aadr: Load address #adr into register I
pub fn load_i_immediate(&self, a: Adr) -> String {
format!("mov ${a:03x}, I").style(self.normal).to_string()
}
/// Badr: Jump to &adr + v0
pub fn jump_indexed(&self, a: Adr) -> String {
format!("jmp ${a:03x}+v0").style(self.normal).to_string()
}
/// `Cxbb`: Stores a random number + the provided byte into vX
/// Pretty sure the input byte is supposed to be the seed of a LFSR or something
pub fn rand(&self, x: Reg, b: u8) -> String {
format!("rand #{b:X}, v{x:X}")
.style(self.normal)
.to_string()
}
/// `Dxyn`: Draws n-byte sprite to the screen at coordinates (vX, vY)
pub fn draw(&self, x: Reg, y: Reg, n: Nib) -> String {
format!("draw #{n:x}, v{x:X}, v{y:X}")
.style(self.normal)
.to_string()
}
/// `Ex9E`: Skip next instruction if key == #X
pub fn skip_key_equals(&self, x: Reg) -> String {
format!("sek v{x:X}").style(self.normal).to_string()
}
/// `ExaE`: Skip next instruction if key != #X
pub fn skip_key_not_equals(&self, x: Reg) -> String {
format!("snek v{x:X}").style(self.normal).to_string()
}
/// `Fx07`: Get the current DT, and put it in vX
/// ```py
/// vX = DT
/// ```
pub fn load_delay_timer(&self, x: Reg) -> String {
format!("mov DT, v{x:X}").style(self.normal).to_string()
}
/// `Fx0A`: Wait for key, then vX = K
pub fn wait_for_key(&self, x: Reg) -> String {
format!("waitk v{x:X}").style(self.normal).to_string()
}
/// `Fx15`: Load vX into DT
/// ```py
/// DT = vX
/// ```
pub fn store_delay_timer(&self, x: Reg) -> String {
format!("mov v{x:X}, DT").style(self.normal).to_string()
}
/// `Fx18`: Load vX into ST
/// ```py
/// ST = vX;
/// ```
pub fn store_sound_timer(&self, x: Reg) -> String {
format!("mov v{x:X}, ST").style(self.normal).to_string()
}
/// `Fx1e`: Add vX to I,
/// ```py
/// I += vX;
/// ```
pub fn add_to_indirect(&self, x: Reg) -> String {
format!("add v{x:X}, I").style(self.normal).to_string()
}
/// `Fx29`: Load sprite for character in vX into I
/// ```py
/// I = sprite(X);
/// ```
pub fn load_sprite(&self, x: Reg) -> String {
format!("font v{x:X}, I").style(self.normal).to_string()
}
/// `Fx33`: BCD convert X into I`[0..3]`
pub fn bcd_convert(&self, x: Reg) -> String {
format!("bcd v{x:X}, &I").style(self.normal).to_string()
}
/// `Fx55`: DMA Stor from I to registers 0..X
pub fn store_dma(&self, x: Reg) -> String {
format!("dmao v{x:X}").style(self.normal).to_string()
}
/// `Fx65`: DMA Load from I to registers 0..X
pub fn load_dma(&self, x: Reg) -> String {
format!("dmai v{x:X}").style(self.normal).to_string()
}
}
/// Builder for [Disassemble]rs
#[derive(Clone, Debug, Default, PartialEq)]
pub struct DisassembleBuilder {
invalid: Option<Style>,
normal: Option<Style>,
}
impl DisassembleBuilder {
/// Styles invalid (or unimplemented) instructions
pub fn invalid(mut self, style: Style) -> Self {
self.invalid = Some(style);
self
}
/// Styles valid (implemented) instructions
pub fn normal(mut self, style: Style) -> Self {
self.normal = Some(style);
self
}
/// Builds a Disassemble
pub fn build(self) -> Disassemble {
Disassemble {
invalid: if let Some(style) = self.invalid {
style
} else {
Style::new().bold().red()
},
normal: if let Some(style) = self.normal {
style
} else {
Style::new().green()
},
}
}
}

184
src/cpu/disassembler.rs Normal file
View File

@ -0,0 +1,184 @@
//! A disassembler for Chip-8 opcodes
#![allow(clippy::bad_bit_mask)]
use super::Disassembler;
use imperative_rs::InstructionSet;
use owo_colors::{OwoColorize, Style};
use std::fmt::Display;
#[allow(non_camel_case_types, non_snake_case, missing_docs)]
#[derive(Clone, Copy, Debug, InstructionSet, PartialEq, Eq)]
/// Implements a Disassembler using imperative_rs
pub enum Insn {
/// | 00e0 | Clear screen memory to 0s
#[opcode = "0x00e0"]
cls,
/// | 00ee | Return from subroutine
#[opcode = "0x00ee"]
ret,
/// | 1aaa | Jumps to an absolute address
#[opcode = "0x1AAA"]
jmp { A: u16 },
/// | 2aaa | Pushes pc onto the stack, then jumps to a
#[opcode = "0x2AAA"]
call { A: u16 },
/// | 3xbb | Skips next instruction if register X == b
#[opcode = "0x3xBB"]
seb { B: u8, x: usize },
/// | 4xbb | Skips next instruction if register X != b
#[opcode = "0x4xBB"]
sneb { B: u8, x: usize },
/// | 9XY0 | Skip next instruction if vX == vY |
#[opcode = "0x5xy0"]
se { y: usize, x: usize },
/// | 6xbb | Loads immediate byte b into register vX
#[opcode = "0x6xBB"]
movb { B: u8, x: usize },
/// | 7xbb | Adds immediate byte b to register vX
#[opcode = "0x7xBB"]
addb { B: u8, x: usize },
/// | 8xy0 | Loads the value of y into x
#[opcode = "0x8xy0"]
mov { x: usize, y: usize },
/// | 8xy1 | Performs bitwise or of vX and vY, and stores the result in vX
#[opcode = "0x8xy1"]
or { y: usize, x: usize },
/// | 8xy2 | Performs bitwise and of vX and vY, and stores the result in vX
#[opcode = "0x8xy2"]
and { y: usize, x: usize },
/// | 8xy3 | Performs bitwise xor of vX and vY, and stores the result in vX
#[opcode = "0x8xy3"]
xor { y: usize, x: usize },
/// | 8xy4 | Performs addition of vX and vY, and stores the result in vX
#[opcode = "0x8xy4"]
add { y: usize, x: usize },
/// | 8xy5 | Performs subtraction of vX and vY, and stores the result in vX
#[opcode = "0x8xy5"]
sub { y: usize, x: usize },
/// | 8xy6 | Performs bitwise right shift of vX (or vY)
#[opcode = "0x8xy6"]
shr { y: usize, x: usize },
/// | 8xy7 | Performs subtraction of vY and vX, and stores the result in vX
#[opcode = "0x8xy7"]
bsub { y: usize, x: usize },
/// | 8xyE | Performs bitwise left shift of vX
#[opcode = "0x8xye"]
shl { y: usize, x: usize },
/// | 9XY0 | Skip next instruction if vX != vY
#[opcode = "0x9xy0"]
sne { y: usize, x: usize },
/// | Aaaa | Load address #a into register I
#[opcode = "0xaAAA"]
movI { A: u16 },
/// | Baaa | Jump to &adr + v0
#[opcode = "0xbAAA"]
jmpr { A: u16 },
/// | Cxbb | Stores a random number & the provided byte into vX
#[opcode = "0xcxBB"]
rand { B: u8, x: usize },
/// | Dxyn | Draws n-byte sprite to the screen at coordinates (vX, vY)
#[opcode = "0xdxyn"]
draw { x: usize, y: usize, n: u8 },
/// | eX9e | Skip next instruction if key == vX
#[opcode = "0xex9e"]
sek { x: usize },
/// | eXa1 | Skip next instruction if key != vX
#[opcode = "0xexa1"]
snek { x: usize },
// | fX07 | Set vX to value in delay timer
#[opcode = "0xfx07"]
getdt { x: usize },
// | fX0a | Wait for input, store key in vX
#[opcode = "0xfx0a"]
waitk { x: usize },
// | fX15 | Set sound timer to the value in vX
#[opcode = "0xfx15"]
setdt { x: usize },
// | fX18 | set delay timer to the value in vX
#[opcode = "0xfx18"]
movst { x: usize },
// | fX1e | Add vX to I
#[opcode = "0xfx1e"]
addI { x: usize },
// | fX29 | Load sprite for character x into I
#[opcode = "0xfx29"]
font { x: usize },
// | fX33 | BCD convert X into I[0..3]
#[opcode = "0xfx33"]
bcd { x: usize },
// | fX55 | DMA Stor from I to registers 0..X
#[opcode = "0xfx55"]
dmao { x: usize },
// | fX65 | DMA Load from I to registers 0..X
#[opcode = "0xfx65"]
dmai { x: usize },
}
impl Display for Insn {
#[rustfmt::skip]
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Insn::cls => write!(f, "cls "),
Insn::ret => write!(f, "ret "),
Insn::jmp { A } => write!(f, "jmp {A:03x}"),
Insn::call { A } => write!(f, "call {A:03x}"),
Insn::seb { B, x } => write!(f, "se #{B:02x}, v{x:X}"),
Insn::sneb { B, x } => write!(f, "sne #{B:02x}, v{x:X}"),
Insn::se { y, x } => write!(f, "se v{x:X}, v{y:X}"),
Insn::movb { B, x } => write!(f, "mov #{B:02x}, v{x:X}"),
Insn::addb { B, x } => write!(f, "add #{B:02x}, v{x:X}"),
Insn::mov { x, y } => write!(f, "mov v{y:X}, v{x:X}"),
Insn::or { y, x } => write!(f, "or v{y:X}, v{x:X}"),
Insn::and { y, x } => write!(f, "and v{y:X}, v{x:X}"),
Insn::xor { y, x } => write!(f, "xor v{y:X}, v{x:X}"),
Insn::add { y, x } => write!(f, "add v{y:X}, v{x:X}"),
Insn::sub { y, x } => write!(f, "sub v{y:X}, v{x:X}"),
Insn::shr { y, x } => write!(f, "shr v{y:X}, v{x:X}"),
Insn::bsub { y, x } => write!(f, "bsub v{y:X}, v{x:X}"),
Insn::shl { y, x } => write!(f, "shl v{y:X}, v{x:X}"),
Insn::sne { y, x } => write!(f, "sne v{x:X}, v{y:X}"),
Insn::movI { A } => write!(f, "mov ${A:03x}, I"),
Insn::jmpr { A } => write!(f, "jmp ${A:03x}+v0"),
Insn::rand { B, x } => write!(f, "rand #{B:02x}, v{x:X}"),
Insn::draw { x, y, n } => write!(f, "draw #{n:x}, v{x:X}, v{y:X}"),
Insn::sek { x } => write!(f, "sek v{x:X}"),
Insn::snek { x } => write!(f, "snek v{x:X}"),
Insn::getdt { x } => write!(f, "mov DT, v{x:X}"),
Insn::waitk { x } => write!(f, "waitk v{x:X}"),
Insn::setdt { x } => write!(f, "mov v{x:X}, DT"),
Insn::movst { x } => write!(f, "mov v{x:X}, ST"),
Insn::addI { x } => write!(f, "add v{x:X}, I"),
Insn::font { x } => write!(f, "font v{x:X}, I"),
Insn::bcd { x } => write!(f, "bcd v{x:X}, &I"),
Insn::dmao { x } => write!(f, "dmao v{x:X}"),
Insn::dmai { x } => write!(f, "dmai v{x:X}"),
}
}
}
/// Disassembles Chip-8 instructions, printing them in the provided [owo_colors::Style]s
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct Dis {
/// Styles invalid instructions
pub invalid: Style,
/// Styles valid instruction
pub normal: Style,
}
impl Default for Dis {
fn default() -> Self {
Self {
invalid: Style::new().bold().red(),
normal: Style::new().green(),
}
}
}
impl Disassembler for Dis {
fn once(&self, insn: u16) -> String {
if let Ok((_, insn)) = Insn::decode(&insn.to_be_bytes()) {
format!("{}", insn.style(self.normal))
} else {
format!("{}", format_args!("inval {insn:04x}").style(self.invalid))
}
}
}

View File

@ -54,28 +54,28 @@ mod unimplemented {
fn ins_5xyn() { fn ins_5xyn() {
let (mut cpu, mut bus) = setup_environment(); let (mut cpu, mut bus) = setup_environment();
bus.write(0x200u16, 0x500fu16); // 0x500f is not an instruction bus.write(0x200u16, 0x500fu16); // 0x500f is not an instruction
cpu.tick(&mut bus); cpu.tick(&mut bus).unwrap();
} }
#[test] #[test]
#[should_panic] #[should_panic]
fn ins_8xyn() { fn ins_8xyn() {
let (mut cpu, mut bus) = setup_environment(); let (mut cpu, mut bus) = setup_environment();
bus.write(0x200u16, 0x800fu16); // 0x800f is not an instruction bus.write(0x200u16, 0x800fu16); // 0x800f is not an instruction
cpu.tick(&mut bus); cpu.tick(&mut bus).unwrap();
} }
#[test] #[test]
#[should_panic] #[should_panic]
fn ins_9xyn() { fn ins_9xyn() {
let (mut cpu, mut bus) = setup_environment(); let (mut cpu, mut bus) = setup_environment();
bus.write(0x200u16, 0x900fu16); // 0x800f is not an instruction bus.write(0x200u16, 0x900fu16); // 0x800f is not an instruction
cpu.tick(&mut bus); cpu.tick(&mut bus).unwrap();
} }
#[test] #[test]
#[should_panic] #[should_panic]
fn ins_exbb() { fn ins_exbb() {
let (mut cpu, mut bus) = setup_environment(); let (mut cpu, mut bus) = setup_environment();
bus.write(0x200u16, 0xe00fu16); // 0xe00f is not an instruction bus.write(0x200u16, 0xe00fu16); // 0xe00f is not an instruction
cpu.tick(&mut bus); cpu.tick(&mut bus).unwrap();
} }
// Fxbb // Fxbb
#[test] #[test]
@ -83,22 +83,12 @@ mod unimplemented {
fn ins_fxbb() { fn ins_fxbb() {
let (mut cpu, mut bus) = setup_environment(); let (mut cpu, mut bus) = setup_environment();
bus.write(0x200u16, 0xf00fu16); // 0xf00f is not an instruction bus.write(0x200u16, 0xf00fu16); // 0xf00f is not an instruction
cpu.tick(&mut bus); cpu.tick(&mut bus).unwrap();
} }
} }
mod sys { mod sys {
use super::*; use super::*;
/// 0aaa: Handles a "machine language function call" (lmao)
#[test]
#[should_panic]
fn sys() {
let (mut cpu, mut bus) = setup_environment();
bus.write(0x200u16, 0x0200u16); // 0x0200 is not one of the allowed routines
cpu.tick(&mut bus);
cpu.sys(0x200);
}
/// 00e0: Clears the screen memory to 0 /// 00e0: Clears the screen memory to 0
#[test] #[test]
fn clear_screen() { fn clear_screen() {
@ -119,7 +109,7 @@ mod sys {
// Place the address on the stack // Place the address on the stack
bus.write(cpu.sp.wrapping_add(2), test_addr); bus.write(cpu.sp.wrapping_add(2), test_addr);
cpu.ret(&mut bus); cpu.ret(&bus);
// Verify the current address is the address from the stack // Verify the current address is the address from the stack
assert_eq!(test_addr, cpu.pc); assert_eq!(test_addr, cpu.pc);
@ -639,11 +629,13 @@ mod io {
for test in SCREEN_TESTS { for test in SCREEN_TESTS {
let (mut cpu, mut bus) = setup_environment(); let (mut cpu, mut bus) = setup_environment();
cpu.flags.quirks = test.quirks; cpu.flags.quirks = test.quirks;
// Debug mode is 5x slower
cpu.flags.debug = false;
// Load the test program // Load the test program
bus = bus.load_region(Program, test.program); bus = bus.load_region(Program, test.program);
// Run the test program for the specified number of steps // Run the test program for the specified number of steps
while cpu.cycle() < test.steps { while cpu.cycle() < test.steps {
cpu.multistep(&mut bus, test.steps - cpu.cycle()); cpu.multistep(&mut bus, test.steps - cpu.cycle()).unwrap();
} }
// Compare the screen to the reference screen buffer // Compare the screen to the reference screen buffer
bus.print_screen().unwrap(); bus.print_screen().unwrap();
@ -723,20 +715,20 @@ mod io {
for x in 0..0xf { for x in 0..0xf {
cpu.v[x] = 0xff; cpu.v[x] = 0xff;
cpu.wait_for_key(x); cpu.wait_for_key(x);
assert_eq!(true, cpu.flags.keypause); assert!(cpu.flags.keypause);
assert_eq!(0xff, cpu.v[x]); assert_eq!(0xff, cpu.v[x]);
// There are three parts to a button press // There are three parts to a button press
// When the button is pressed // When the button is pressed
cpu.press(key); cpu.press(key);
assert_eq!(true, cpu.flags.keypause); assert!(cpu.flags.keypause);
assert_eq!(0xff, cpu.v[x]); assert_eq!(0xff, cpu.v[x]);
// When the button is held // When the button is held
cpu.wait_for_key(x); cpu.wait_for_key(x);
assert_eq!(true, cpu.flags.keypause); assert!(cpu.flags.keypause);
assert_eq!(0xff, cpu.v[x]); assert_eq!(0xff, cpu.v[x]);
// And when the button is released! // And when the button is released!
cpu.release(key); cpu.release(key);
assert_eq!(false, cpu.flags.keypause); assert!(!cpu.flags.keypause);
assert_eq!(Some(key), cpu.flags.lastkey); assert_eq!(Some(key), cpu.flags.lastkey);
cpu.wait_for_key(x); cpu.wait_for_key(x);
assert_eq!(key as u8, cpu.v[x]); assert_eq!(key as u8, cpu.v[x]);
@ -888,7 +880,7 @@ mod io {
const DATA: &[u8] = b"ABCDEFGHIJKLMNOP"; const DATA: &[u8] = b"ABCDEFGHIJKLMNOP";
// Load some test data into memory // Load some test data into memory
let addr = 0x456; let addr = 0x456;
cpu.v.as_mut_slice().write(DATA).unwrap(); cpu.v.as_mut_slice().write_all(DATA).unwrap();
for len in 0..16 { for len in 0..16 {
// Perform DMA store // Perform DMA store
cpu.i = addr as u16; cpu.i = addr as u16;
@ -898,7 +890,7 @@ mod io {
assert_eq!(bus[0..=len], DATA[0..=len]); assert_eq!(bus[0..=len], DATA[0..=len]);
assert_eq!(bus[len + 1..], [0; 16][len + 1..]); assert_eq!(bus[len + 1..], [0; 16][len + 1..]);
// clear // clear
bus.write(&[0; 16]).unwrap(); bus.write_all(&[0; 16]).unwrap();
} }
} }
@ -912,7 +904,7 @@ mod io {
let addr = 0x456; let addr = 0x456;
bus.get_mut(addr..addr + DATA.len()) bus.get_mut(addr..addr + DATA.len())
.unwrap() .unwrap()
.write(DATA) .write_all(DATA)
.unwrap(); .unwrap();
for len in 0..16 { for len in 0..16 {
// Perform DMA load // Perform DMA load
@ -938,7 +930,7 @@ mod behavior {
cpu.flags.monotonic = None; cpu.flags.monotonic = None;
cpu.delay = 10.0; cpu.delay = 10.0;
for _ in 0..2 { for _ in 0..2 {
cpu.multistep(&mut bus, 8); cpu.multistep(&mut bus, 8).unwrap();
std::thread::sleep(Duration::from_secs_f64(1.0 / 60.0)); std::thread::sleep(Duration::from_secs_f64(1.0 / 60.0));
} }
// time is within 1 frame deviance over a theoretical 2 frame pause // time is within 1 frame deviance over a theoretical 2 frame pause
@ -950,7 +942,7 @@ mod behavior {
cpu.flags.monotonic = None; // disable monotonic timing cpu.flags.monotonic = None; // disable monotonic timing
cpu.sound = 10.0; cpu.sound = 10.0;
for _ in 0..2 { for _ in 0..2 {
cpu.multistep(&mut bus, 8); cpu.multistep(&mut bus, 8).unwrap();
std::thread::sleep(Duration::from_secs_f64(1.0 / 60.0)); std::thread::sleep(Duration::from_secs_f64(1.0 / 60.0));
} }
// time is within 1 frame deviance over a theoretical 2 frame pause // time is within 1 frame deviance over a theoretical 2 frame pause
@ -962,11 +954,11 @@ mod behavior {
cpu.flags.monotonic = None; // disable monotonic timing cpu.flags.monotonic = None; // disable monotonic timing
cpu.flags.vbi_wait = true; cpu.flags.vbi_wait = true;
for _ in 0..2 { for _ in 0..2 {
cpu.multistep(&mut bus, 8); cpu.multistep(&mut bus, 8).unwrap();
std::thread::sleep(Duration::from_secs_f64(1.0 / 60.0)); std::thread::sleep(Duration::from_secs_f64(1.0 / 60.0));
} }
// Display wait is disabled after a 1 frame pause // Display wait is disabled after a 1 frame pause
assert_eq!(false, cpu.flags.vbi_wait); assert!(!cpu.flags.vbi_wait);
} }
} }
mod breakpoint { mod breakpoint {
@ -975,8 +967,8 @@ mod behavior {
fn hit_break() { fn hit_break() {
let (mut cpu, mut bus) = setup_environment(); let (mut cpu, mut bus) = setup_environment();
cpu.set_break(0x202); cpu.set_break(0x202);
cpu.multistep(&mut bus, 10); cpu.multistep(&mut bus, 10).unwrap();
assert_eq!(true, cpu.flags.pause); assert!(cpu.flags.pause);
assert_eq!(0x202, cpu.pc); assert_eq!(0x202, cpu.pc);
} }
} }

View File

@ -14,7 +14,7 @@ fn run_single_op(op: &[u8]) -> CPU {
); );
cpu.v = *INDX; cpu.v = *INDX;
cpu.flags.quirks = Quirks::from(true); cpu.flags.quirks = Quirks::from(true);
cpu.tick(&mut bus); // will panic if unimplemented cpu.tick(&mut bus).unwrap(); // will panic if unimplemented
cpu cpu
} }

View File

@ -3,6 +3,8 @@
//! Error type for Chirp //! Error type for Chirp
use std::ops::Range;
use crate::bus::Region; use crate::bus::Region;
use thiserror::Error; use thiserror::Error;
@ -13,7 +15,7 @@ pub type Result<T> = std::result::Result<T, Error>;
#[derive(Debug, Error)] #[derive(Debug, Error)]
pub enum Error { pub enum Error {
/// Represents an unimplemented operation /// Represents an unimplemented operation
#[error("Unrecognized opcode {word}")] #[error("Unrecognized opcode: {word:04x}")]
UnimplementedInstruction { UnimplementedInstruction {
/// The offending word /// The offending word
word: u16, word: u16,
@ -24,9 +26,18 @@ pub enum Error {
/// The offending [Region] /// The offending [Region]
region: Region, region: Region,
}, },
/// Tried to fetch [Range] from bus, received nothing
#[error("Invalid range {range:04x?} for bus")]
InvalidBusRange {
/// The offending [Range]
range: Range<usize>,
},
/// Error originated in [std::io] /// Error originated in [std::io]
#[error(transparent)] #[error(transparent)]
IoError(#[from] std::io::Error), IoError(#[from] std::io::Error),
/// Error originated in [std::array::TryFromSliceError]
#[error(transparent)]
TryFromSliceError(#[from] std::array::TryFromSliceError),
/// Error originated in [minifb] /// Error originated in [minifb]
#[error(transparent)] #[error(transparent)]
MinifbError(#[from] minifb::Error), MinifbError(#[from] minifb::Error),

View File

@ -7,6 +7,7 @@
use std::{ use std::{
ffi::OsStr, ffi::OsStr,
path::{Path, PathBuf}, path::{Path, PathBuf},
time::Instant,
}; };
use crate::{ use crate::{
@ -48,6 +49,7 @@ impl UIBuilder {
keyboard: Default::default(), keyboard: Default::default(),
fb: Default::default(), fb: Default::default(),
rom: self.rom.to_owned().unwrap_or_default(), rom: self.rom.to_owned().unwrap_or_default(),
time: Instant::now(),
}; };
Ok(ui) Ok(ui)
} }
@ -108,7 +110,7 @@ impl FrameBuffer {
if let Some(screen) = bus.get_region(Region::Screen) { if let Some(screen) = bus.get_region(Region::Screen) {
for (idx, byte) in screen.iter().enumerate() { for (idx, byte) in screen.iter().enumerate() {
for bit in 0..8 { for bit in 0..8 {
self.buffer[8 * idx + bit] = if byte & (1 << 7 - bit) as u8 != 0 { self.buffer[8 * idx + bit] = if byte & (1 << (7 - bit)) as u8 != 0 {
self.format.fg self.format.fg
} else { } else {
self.format.bg self.format.bg
@ -135,6 +137,7 @@ pub struct UI {
keyboard: Vec<Key>, keyboard: Vec<Key>,
fb: FrameBuffer, fb: FrameBuffer,
rom: PathBuf, rom: PathBuf,
time: Instant,
} }
impl UI { impl UI {
@ -143,15 +146,22 @@ impl UI {
if ch8.cpu.flags.pause { if ch8.cpu.flags.pause {
self.window.set_title("Chirp ⏸") self.window.set_title("Chirp ⏸")
} else { } else {
self.window.set_title("Chirp ▶"); self.window.set_title(&format!(
"Chirp ▶ {:2?}",
(1.0 / self.time.elapsed().as_secs_f64()).trunc()
));
} }
if !self.window.is_open() {
std::process::exit(0);
}
self.time = Instant::now();
// update framebuffer // update framebuffer
self.fb.render(&mut self.window, &mut ch8.bus); self.fb.render(&mut self.window, &ch8.bus);
} }
Some(()) Some(())
} }
pub fn keys(&mut self, ch8: &mut Chip8) -> Option<()> { pub fn keys(&mut self, ch8: &mut Chip8) -> Result<Option<()>> {
// TODO: Remove this hacky workaround for minifb's broken get_keys_* functions. // TODO: Remove this hacky workaround for minifb's broken get_keys_* functions.
let get_keys_pressed = || { let get_keys_pressed = || {
self.window self.window
@ -179,7 +189,7 @@ impl UI {
.print_screen() .print_screen()
.expect("The 'screen' memory region should exist"), .expect("The 'screen' memory region should exist"),
F3 => { F3 => {
debug_dump_screen(&ch8, &self.rom).expect("Unable to write debug screen dump"); debug_dump_screen(ch8, &self.rom).expect("Unable to write debug screen dump");
} }
F4 | Slash => { F4 | Slash => {
eprintln!("Debug {}.", { eprintln!("Debug {}.", {
@ -201,7 +211,7 @@ impl UI {
}), }),
F6 | Enter => { F6 | Enter => {
eprintln!("Step"); eprintln!("Step");
ch8.cpu.singlestep(&mut ch8.bus); ch8.cpu.singlestep(&mut ch8.bus)?;
} }
F7 => { F7 => {
eprintln!("Set breakpoint {:03x}.", ch8.cpu.pc()); eprintln!("Set breakpoint {:03x}.", ch8.cpu.pc());
@ -216,12 +226,12 @@ impl UI {
ch8.cpu.soft_reset(); ch8.cpu.soft_reset();
ch8.bus.clear_region(Screen); ch8.bus.clear_region(Screen);
} }
Escape => return None, Escape => return Ok(None),
key => ch8.cpu.press(identify_key(key)), key => ch8.cpu.press(identify_key(key)),
} }
} }
self.keyboard = self.window.get_keys(); self.keyboard = self.window.get_keys();
Some(()) Ok(Some(()))
} }
} }

View File

@ -1,7 +1,7 @@
// (c) 2023 John A. Breaux // (c) 2023 John A. Breaux
// This code is licensed under MIT license (see LICENSE.txt for details) // This code is licensed under MIT license (see LICENSE.txt for details)
#![cfg_attr(feature = "unstable", feature(no_coverage))] #![cfg_attr(feature = "unstable", feature(no_coverage))]
#![deny(missing_docs)] #![deny(missing_docs, clippy::all)]
//! This crate implements a Chip-8 interpreter as if it were a real CPU architecture, //! This crate implements a Chip-8 interpreter as if it were a real CPU architecture,
//! to the best of my current knowledge. As it's the first emulator project I've //! to the best of my current knowledge. As it's the first emulator project I've
//! embarked on, and I'm fairly new to Rust, it's going to be rough around the edges. //! embarked on, and I'm fairly new to Rust, it's going to be rough around the edges.
@ -19,7 +19,7 @@ pub mod prelude {
use super::*; use super::*;
pub use crate::bus; pub use crate::bus;
pub use bus::{Bus, Read, Region::*, Write}; pub use bus::{Bus, Read, Region::*, Write};
pub use cpu::{disassemble::Disassemble, ControlFlags, CPU}; pub use cpu::{disassembler::Dis, ControlFlags, CPU};
pub use error::Result; pub use error::Result;
pub use io::{UIBuilder, *}; pub use io::{UIBuilder, *};
} }

View File

@ -33,7 +33,7 @@ fn run_screentest(test: SuiteTest, mut cpu: CPU, mut bus: Bus) {
bus = bus.load_region(Program, test.program); bus = bus.load_region(Program, test.program);
// The test suite always initiates a keypause on test completion // The test suite always initiates a keypause on test completion
while !cpu.flags.keypause { while !cpu.flags.keypause {
cpu.multistep(&mut bus, 8); cpu.multistep(&mut bus, 8).unwrap();
} }
// Compare the screen to the reference screen buffer // Compare the screen to the reference screen buffer
bus.print_screen().unwrap(); bus.print_screen().unwrap();

View File

@ -22,6 +22,7 @@ mod bus {
assert_eq!(r1, r2); assert_eq!(r1, r2);
} }
#[test] #[test]
#[allow(clippy::clone_on_copy)]
fn clone() { fn clone() {
let r1 = Screen; let r1 = Screen;
let r2 = r1.clone(); let r2 = r1.clone();
@ -189,6 +190,23 @@ mod cpu {
} }
} }
mod dis {
use chirp::cpu::disassembler::Insn;
use imperative_rs::InstructionSet;
#[test]
#[allow(clippy::clone_on_copy)]
fn clone() {
let opcode = Insn::decode(&[0xef, 0xa1]).unwrap().1; // random valid opcode
let clone = opcode.clone();
assert_eq!(opcode, clone);
}
#[test]
fn debug() {
println!("{:?}", Insn::decode(b"AA")) // "sne #41, v1"
}
}
#[test] #[test]
fn error() { fn error() {
let error = chirp::error::Error::MissingRegion { region: Screen }; let error = chirp::error::Error::MissingRegion { region: Screen };
@ -210,6 +228,7 @@ mod ui_builder {
println!("{ui_builder:?}"); println!("{ui_builder:?}");
} }
#[test] #[test]
#[allow(clippy::redundant_clone)]
fn clone_debug() { fn clone_debug() {
let ui_builder_clone = UIBuilder::default().clone(); let ui_builder_clone = UIBuilder::default().clone();
println!("{ui_builder_clone:?}"); println!("{ui_builder_clone:?}");
@ -236,7 +255,7 @@ mod ui {
let mut ch8 = new_chip8(); let mut ch8 = new_chip8();
let ch8 = &mut ch8; let ch8 = &mut ch8;
ui.frame(ch8).unwrap(); ui.frame(ch8).unwrap();
ui.keys(ch8); ui.keys(ch8).unwrap();
Ok(()) Ok(())
} }
#[test] #[test]