use super::*; /// Creates a [Parsable] implementation for an enum whose variants /// are named after other [Parsable] items macro make_parsable($(#[$meta:meta])* $vis:vis enum $id:ident {$($(#[$vmeta:meta])*$v:ident),*$(,)?}) { $( #[$meta] )* $vis enum $id {$($(#[$vmeta])*$v($v),)* } impl ::msp430_asm::parser::parsable::Parsable for $id { fn parse<'text, T>(p: &Parser, stream: &mut T) -> Result where T: TokenStream<'text> { $(if let Some(v) = Parsable::try_parse(p, stream)? { Ok(Self::$v(v)) } else )* { Err(ParseError::UnrecognizedDirective("".into())) } } } impl TryFrom<&str> for $id { type Error = ParseError; fn try_from(value: &str) -> Result { Parsable::parse(&Parser::default(), &mut Tokenizer::new(value).ignore(Type::Space).preprocessed()) } } } make_parsable! { #[derive(Debug)] pub enum SyntaxFragment { Opcode, PrimaryOperand, Number, } } impl SyntaxFragment { pub fn info(&self) { match self { SyntaxFragment::Opcode(o) => Self::opcode_info(o), SyntaxFragment::PrimaryOperand(o) => Self::operand_info(o), SyntaxFragment::Number(n) => println!("The number {n}"), } } fn opcode_info(o: &Opcode) { let (desc, as_rust) = usage(o); println!("Usage: {o}{}\n{desc} ( {as_rust} )", params(o)); footer!("https://mspgcc.sourceforge.net/manual/x223.html"); } // TODO: re-enable full instruction decoding // fn encoding_info(e: &Encoding) { // match e { // Encoding::Single { dst, .. } => Self::operand_info(dst), // Encoding::Jump { target } => println!("Jumps to (pc + {target})"), // Encoding::Double { src, dst, .. } => { // Self::operand_info(src); // Self::operand_info(&dst.clone().into()) // } // } // } fn operand_info(o: &PrimaryOperand) { match o { PrimaryOperand::Direct(r) => Self::register_info(r), PrimaryOperand::Indirect(r) => { Self::register_info(r); println!("Indirect addressing mode: use data pointed to by {r}"); } PrimaryOperand::PostInc(r) => { Self::register_info(r); println!("Indirect post-increment mode: use data pointed to by {r}, then increment {r}"); } PrimaryOperand::Indexed(r, n) => { Self::register_info(r); println!("Indexed mode: use the data at {r}[{n}]"); } PrimaryOperand::Relative(_) => return, PrimaryOperand::Absolute(n) => println!("Absolute mode: use the data at absolute address {n}"), PrimaryOperand::Immediate(n) => println!("Immediate mode: the constant {n}"), PrimaryOperand::Four => println!("#4 mode: Immediate 4 is encoded @sr"), PrimaryOperand::Eight => println!("#8 mode: Immediate 8 is encoded @sr+"), PrimaryOperand::Zero => println!("#0 mode: Immediate 0 is encoded cg (r3)"), PrimaryOperand::One => println!("#1 mode: Immediate 1 is encoded _(cg), where _ is a nonexistent ext-word"), PrimaryOperand::Two => println!("#2 mode: Immediate 2 is encoded @cg"), PrimaryOperand::MinusOne => println!("#-1 mode: the all-ones constant, is encoded @cg+"), } footer!("https://mspgcc.sourceforge.net/manual/x82.html"); } fn register_info(r: &Register) { use Register as Re; match r { Re::pc => println!("pc (r0) is the Program Counter. Post-increment addressing will increase it by 2."), Re::sp => println!("sp (r1) is the Stack Pointer. Post-increment addressing will increase it by 2."), Re::sr => println!( "sr (r2) is the Status Register. It has arithmetic flags: oVerflow, Negative, Zero, and Carry;\nInterrupt Enable; and toggles for various clock/sleep functions.\n8\t7\t6\t5\t4\t3\t2\t1\t0\nV\tSCG1\tSCG1\tOSCOFF\tCPUOFF\tGIE\tN\tZ\tC", ), Re::cg => println!("cg (r3) is the Constant Generator. It's hard-wired to zero."), Re::r4 | Re::r5 | Re::r6 | Re::r7 | Re::r8 | Re::r9 | Re::r10 | Re::r11 => { println!("{r} is a callee-saved general purpose register.") } Re::r12 | Re::r13 | Re::r14 | Re::r15 => { println!("{r} is a caller-saved general purpose register, allowed for return values.") } } } } // Gets parameter usage information from the opcode's EncodingParser pub fn params(opcode: &Opcode) -> &'static str { match opcode.resolve().1 { EncodingParser::Jump { target: None } => " target (relative address or label)", EncodingParser::Single { width: None, dst: None } => "[.b] dst", EncodingParser::Single { dst: None, .. } => " dst", EncodingParser::Double { src: None, dst: None, .. } => "[.b] src, dst", EncodingParser::Double { src: None, .. } => "[.b] src", EncodingParser::Double { dst: None, .. } => "[.b] dst", EncodingParser::Double { .. } => "[.b]", EncodingParser::Reflexive { reg: None, .. } => "[.b] dst", _ => "", } } pub fn usage(opcode: &Opcode) -> (&'static str, &'static str) { match opcode { // Single Opcode::Rrc => ("Rotates dst right, through carry flag", "dst = (dst >> 1) | (sr[C] << 15)"), Opcode::Swpb => ("Swaps the high and low byte of dst", "dst.swap_bytes()"), Opcode::Rra => ("Shifts dst right, sign-extending the result", "dst >>= 1"), Opcode::Sxt => ("Sign-extends the 8-bit dst to 16-bits", "dst as i16 << 8 >> 8"), Opcode::Push => ("Pushes dst to the stack", "stack.push(dst)"), Opcode::Call => ("Calls a subroutine at an absolute address", "dst()"), Opcode::Reti => ("Return from interrupt handler", "{ sr = stack.pop(); pc = stack.pop() }"), // Jump Opcode::Jnz => ("Jump if the last result was not zero", "if !Z { pc += target }"), Opcode::Jz => ("Jump if the last result was zero", "if Z { pc += target }"), Opcode::Jnc => ("Jump if the last operation did not carry", "if !C { pc += target }"), Opcode::Jc => ("Jump if the last operation produced a carry bit", "if C { pc += target }"), Opcode::Jn => ("Jump if the last result was negative", "if N { pc += target }"), Opcode::Jge => ("Jump if the flags indicate src >= dst", "if sr[C] == sr[V] { pc += target }"), Opcode::Jl => ("Jump if the flags indicate src < dst", "if sr[C] != sr[V] { pc += target }"), Opcode::Jmp => ("Jump unconditionally", "pc += target"), // Double Opcode::Mov => ("Copy src into dst", "dst = src"), Opcode::Add => ("Add src to dst", "dst += src"), Opcode::Addc => ("Add src to dst with carry", "dst += src + sr[C]"), Opcode::Subc => ("Subtract src from dst with carry", "dst -= src - sr[C]"), Opcode::Sub => ("Subtract src from dst", "dst -= src"), Opcode::Cmp => ("Subtract src from dst, but discard the result, keeping the flags", "dst - src"), Opcode::Dadd => ("Add src to dst in Binary Coded Decimal", "dst = dst as BCD + src as BCD"), Opcode::Bit => ("Test if bits in src are set in dst", "(src & dst).cmp(0)"), Opcode::Bic => ("Clear bits in dst that are set in src, without changing flags", "dst &= !src"), Opcode::Bis => ("Set bits in dst that are set in src, without changing flags", "dst |= src"), Opcode::Xor => ("Bitwise Xor src into dst", "dst ^= src"), Opcode::And => ("Bitwise And src into dst", "dst &= src"), // Emulated Opcode::Nop => ("Does nothing", "{}"), Opcode::Pop => ("Pops a value from the stack", "dst = stack.pop()"), Opcode::Br => ("Branches to the absolute address in src", "pc = src"), Opcode::Ret => ("Returns from subroutine", "pc = stack.pop()"), Opcode::Clrc => ("Clears the carry flag", "sr[C] = 0"), Opcode::Setc => ("Sets the carry flag", "sr[C] = 1"), Opcode::Clrz => ("Clears the zero flag", "sr[Z] = 0"), Opcode::Setz => ("Sets the zero flag", "sr[Z] = 1"), Opcode::Clrn => ("Clears the negative flag", "sr[N] = 0"), Opcode::Setn => ("Sets the negative flag", "sr[N] = 1"), Opcode::Dint => ("Disables interrupts", "sr[GIE] = 0"), Opcode::Eint => ("Enables interrupts", "sr[GIE] = 1"), Opcode::Rla => ("Shifts dst to the left, padding with zeros", "dst <<= 1"), Opcode::Rlc => ("Rotates dst to the left, through carry flag", "dst = (dst << 1) + sr[C]"), Opcode::Inv => ("Inverts the bits in dst", "dst = !dst"), Opcode::Clr => ("Sets dst to 0", "dst = 0"), Opcode::Tst => ("Sets the status register flags (CNZV) using dst", ""), Opcode::Dec => ("Decrements dst", "dst -= 1"), Opcode::Decd => ("Decrements dst by 2 (one processor word)", "dst -= 2"), Opcode::Inc => ("Increments dst", "dst += 1"), Opcode::Incd => ("Increments dst by 2 (one processor word)", "dst += 2"), Opcode::Adc => ("Adds the carry bit to dst", "dst += sr[C]"), Opcode::Dadc => ("Adds the carry bit to dst, in Binary Coded Decimal", "dst as BCD = sr[C]"), Opcode::Sbc => ("Subtracts the carry bit from dst", "dst -= sr[C]"), } } const SINGLE: [Opcode; 7] = [Opcode::Rrc, Opcode::Swpb, Opcode::Rra, Opcode::Sxt, Opcode::Push, Opcode::Call, Opcode::Reti]; const JUMP: [Opcode; 8] = [Opcode::Jnz, Opcode::Jz, Opcode::Jnc, Opcode::Jc, Opcode::Jn, Opcode::Jge, Opcode::Jl, Opcode::Jmp]; #[rustfmt::skip] const DOUBLE: [Opcode; 12] = [ Opcode::Mov, Opcode::Add, Opcode::Addc, Opcode::Subc, Opcode::Sub, Opcode::Cmp, Opcode::Dadd, Opcode::Bit, Opcode::Bic, Opcode::Bis, Opcode::Xor, Opcode::And, ]; #[rustfmt::skip] const SIMULATED: [Opcode; 24] = [ Opcode::Nop, Opcode::Pop, Opcode::Br, Opcode::Ret, Opcode::Clrc, Opcode::Setc, Opcode::Clrz, Opcode::Setz, Opcode::Clrn, Opcode::Setn, Opcode::Dint, Opcode::Eint, Opcode::Rla, Opcode::Rlc, Opcode::Inv, Opcode::Clr, Opcode::Tst, Opcode::Dec, Opcode::Decd, Opcode::Inc, Opcode::Incd, Opcode::Adc, Opcode::Dadc, Opcode::Sbc, ]; pub fn list_opcodes() { let mut stdout = std::io::stdout().lock(); header!(stdout, "Single-operand instructions:"); let _ = write_opcode_list(&mut stdout, &SINGLE); header!(stdout, "Relative Jump instructions:"); let _ = write_opcode_list(&mut stdout, &JUMP); header!(stdout, "Double-operand instructions:"); let _ = write_opcode_list(&mut stdout, &DOUBLE); header!(stdout, "Simulated instructions:"); let _ = write_opcode_list(&mut stdout, &SIMULATED); } fn write_opcode_list(mut f: impl std::io::Write, list: &[Opcode]) -> std::io::Result<()> { for (idx, opcode) in list.iter().enumerate() { write!(f, "{opcode}{}", if idx % 6 == 5 { "\n" } else { "\t" })?; } if list.len() % 6 != 0 { writeln!(f)?; } Ok(()) } macro header ($f:ident, $($x: expr),+) { {write!($f, "{}",SetForegroundColor(Color::Cyan)).ok();write!($f, $($x),+).ok();writeln!($f, "{}",ResetAttributes).ok();} } macro footer ($($x: expr),+) { {print!("{}",SetForegroundColor(Color::DarkGray));print!($($x),+);println!("{}",ResetAttributes);} }