25-Halifax: Add assemble.py, so the script is reproducible

This commit is contained in:
Val 2023-03-15 16:47:55 -05:00
parent 6e9017393b
commit 5e23a963ec
2 changed files with 534 additions and 2 deletions

4
.gitignore vendored
View File

@ -8,8 +8,8 @@ Saves
# MSProbe - https://github.com/Swiftloke/MSProbe
MSProbe*
# 25-Halifax uses a modified MSProbe assemble.py to assemble the binary. It's All Rights Reserved, so I can't distribute.
assemble.py
# 25-Halifax uses a modified MSProbe assemble.py to assemble the binary. ~~It's All Rights Reserved, so I can't distribute.~~ Distributed with permission from the author.
#assemble.py
# Halifax binary dumps
25-Halifax/*.bin

532
25-Halifax/assemble.py Normal file
View File

@ -0,0 +1,532 @@
# Taken from https://github.com/ValShaped/MSProbe
# Forked from https://github.com/Swiftloke/MSProbe
# © 2018-2023 Swiftloke
import sys
import pdb
import re
from typing import Callable
jumpOpcodes = ['jne', 'jeq', 'jlo', 'jhs', 'jn', 'jge', 'jl', 'jmp']
twoOpOpcodes = ['!!!', '!!!', '!!!', '!!!', 'mov', 'add', 'addc', 'subc', 'sub', 'cmp', 'dadd', 'bit', 'bic', 'bis', 'xor', 'and']
oneOpOpcodes = ['rrc', 'swpb', 'rra', 'sxt', 'push', 'call', 'reti']
emulatedOpcodes = {
'ret' : 'mov @sp+, pc',
'clrc' : 'bic #1, sr',
'setc' : 'bis #1, sr',
'clrz' : 'bic #2, sr',
'setz' : 'bis #2, sr',
'clrn' : 'bic #4, sr',
'setn' : 'bis #4, sr',
'dint' : 'bic #8, sr',
'eint' : 'bis #8, sr',
'nop' : 'mov r3, r3', #Any register would do the same
'br' : 'mov {reg}, pc',
'pop' : 'mov @sp+, {reg}',
'rla' : 'add {reg}, {reg}',
'rlc' : 'addc {reg}, {reg}',
'inv' : 'xor #0xffff, {reg}',
'clr' : 'mov #0, {reg}',
'tst' : 'cmp #0, {reg}',
'dec' : 'sub #1, {reg}',
'decd' : 'sub #2, {reg}',
'inc' : 'add #1, {reg}',
'incd' : 'add #2, {reg}',
'adc' : 'addc #0, {reg}',
'dadc' : 'dadd #0, {reg}',
'sbc' : 'subc #0, {reg}',
'jnc' : 'jlo {reg}', #jlo, jhs are aliases of jnc, jc
'jnz' : 'jne {reg}', #jnz, jz are aliases of jne, jeq
'jc' : 'jhs {reg}',
'jz' : 'jeq {reg}',
}
def bitrep(number, bits = 16):
"""Converts to binary form, fixing leading zeroes."""
mask = int('0b' + '1' * bits, 2)
binstr = str(bin(number & mask))[2:]
#negative = binstr[0] == '-'
bitcount = len(binstr)
leading0s = bits - bitcount
return ('0' * leading0s) + binstr
def hexrep(number, zeroes = 4):
"""Converts to hex form, fixing leading zeroes."""
mask = int('0b' + '1' * (zeroes * 4), 2)
hexstr = hex(number & mask)[2:]
hexcount = len(hexstr)
leading0s = zeroes - hexcount
return ('0' * leading0s) + hexstr
def highlight(string: str, substring: str) -> str:
"""Highlight a substring in a string"""
return string.replace(substring, f"\033[4m{substring}\033[0m") if substring else string
class AssemblyError(Exception):
"""
The base class for all Assembly Exceptions
"""
def __init__(self, name: str, reason: str) -> None:
self.type = "Improperly defined AssemblyError"
self.name = name
self.reason = reason
class OpcodeError(AssemblyError):
"""
`OpcodeError` is raised when an opcode mnemonic is not found in the opcode map
"""
def __init__(self, opcode, reason = "Opcode not found in opcode map."):
super().__init__(name=opcode, reason=reason)
self.type = "Invalid opcode mnemonic"
class RedefinedLabelError(AssemblyError):
"""
`RedefinedLabelError` is raised when a label is defined multiple times in the same source file.
Since labels are resolved after compilation, it cannot be known whether you intend to reference a past
or future definition of a label.
"""
def __init__(self, label, reason = "Label already defined."):
super().__init__(name=label, reason=reason)
self.type = "Redefined Label"
class UndefinedLabelError(AssemblyError):
"""
`UndefinedLabelError` is raised when a label used in a jump instruction is not defined in the source
"""
def __init__(self, operand: str, reason: str):
super().__init__(name=operand, reason=reason)
self.type = "Undefined label"
class AddressingModeError(AssemblyError):
"""
`AddressingModeError` is raised when the operand of an instruction is specified with an
unrepresentable addressing mode.
"""
def __init__(self, operand: str, reason: str):
super().__init__(name=operand, reason=reason)
self.type = "Invalid addressing mode"
class JumpOffsetError(AssemblyError):
"""
`JumpOffsetError` is raised when a jump offset cannot be encoded.
Jump offsets are a 12 bit signed integer representing the number of processor words to jump.
As such, they can only encode jump offsets from -0x3fe to +0x400
"""
def __init__(self, offset: str, reason: str):
super().__init__(name=offset, reason=reason)
self.type = "Invalid jump offset"
class RegisterError(AssemblyError):
"""
`RegisterError` is raised when a register isn't one of
[`pc`, `sp`, `sr`, `cg`, `r0`, ..., `r15`]
"""
def __init__(self, register: str, reason: str = "Valid registers are pc, sp, sr, cg, or r0-r15."):
super().__init__(name=register, reason=reason)
self.type = "Invalid register mnemonic"
preprocessor = []
"""
`preprocessorHooks` are functions which take a line from the source file, and return a line.
All registered hooks are called for each line of the source file.
Registering a `preprocessorHook` shall be done through the `registerPreprocessorHook` function.
Their signature is as follows:
```py
hook(instruction_line: str) -> str:
```
"""
postprocessor = []
"""
postprocessorHooks are functions which act on the output stream as a monolithic entity.
Each postprocessorHook is called exactly once per source file, after assembly and before output.
Registering a `postprocessorHook` shall be done through the `registerPostprocessorHook` function.
Their signature is as follows:
```py
hook():
"""
PC = 0 #Incremented by each instruction, incremented in words NOT bytes
labels = {} #Label name and its PC location
"""
`labels` are a label name, followed by a the address of the label relative to the loadaddr
"""
jumps = {} #PC location of jump and its corresponding label
"""
`jumps` are the address of a jump instruction and its corresponding label
During jump resolution, each jump in jumps is modified with a relative offset
Example jump:
{0: "loop"}
"""
output = [] #Output hex
def asmMain(asm_file, outfile=None, silent=False):
line_number = 0
global PC #Get PC
outFP = open(outfile, 'w') if outfile else None
if not asm_file:
#Provide a prompt for entry
instructions = ''
ins = ''
print('Input assembly. Terminate input with the ".end" directive, or Ctrl+D (EOF).')
while True:
ins = sys.stdin.readline()
if ins == '.end\n' or ins == '':
break
instructions = instructions + ins
else:
with open(asm_file) as fp:
instructions = fp.read()
for ins in instructions.splitlines():
#Strip leading and trailing whitespace
ins = ins.strip()
ins = re.split(r'\s*[/;]', ins)[0] #Remove comments
#Skip empty lines or lines beginning with a comment
if len(ins) == 0 or ins.startswith((';', '//')):
continue
#Handle .directives
if ins.startswith('.'):
if ins.startswith(".define"):
registerDefine(ins)
#Allow passing the .end directive in input files, for compatibility with stdin input
if ins.startswith(".end"):
break
continue
#Handle preprocessor substitution hooks
for hook in preprocessor:
ins = hook(ins)
#Handle label registration
if ':' in ins:
try:
registerLabel(ins)
except RedefinedLabelError as exp:
print('Label "' + exp.label + '" at line number ' + str(line_number + 1) + ' already defined')
sys.exit(-1)
else:
try:
assemble(ins)
except AssemblyError as exp:
ins = highlight(ins, exp.name)
print(f'{exp.type} found on line {line_number + 1}: "{ins}"\n{exp.reason}')
sys.exit(-1)
line_number += 1
#Handle postprocessor hooks.
#These functions manipulate the raw output data, and perform tasks such as link resolution
for hook in postprocessor:
hook()
#Output the object as hex
for i in output:
if not silent:
print(hexrep(i), end='', file=sys.stdout)# + ' (' + bitrep(i, 16) + ')')
if outFP:
print(hexrep(i), end='', file=outFP)
if not silent:
print('') #End hex representation with a newline
if outFP:
outFP.close()
def registerPreprocessorHook(hook: Callable):
if hook not in preprocessor:
preprocessor.append(hook)
def registerPostprocessorHook(hook: Callable):
if hook not in postprocessor:
postprocessor.append(hook)
def processDirectives(ins: str) -> str:
pass
def resolveJumps():
"""Resolve pending jumps in the jumps list"""
global labels, jumps, output
#Resolve jump labels
for pc, label in jumps.items():
try:
labelpos = labels[label]
except KeyError:
print(f'Label "{label}" does not exist, but a jump instruction attempts to jump to it')
sys.exit(-1)
#Modify the jump instruction
#Get in little-endian format
ins = hexrep(output[pc])
ins = int(ins[2:4] + ins[0:2], 16)
ins = [bit for bit in bitrep(ins, 16)]
offset = (labelpos - pc) * 2 #Words versus bytes
#Jump offsets are multiplied by two, added by two (PC increment), and sign extendedB
ins[6:] = bitrep((offset - 2) // 2, 10)
#Output again in little endian
strword = hexrep(int(''.join(str(e) for e in ins), 2), 4)
output[pc] = int(strword[2:] + strword[0:2], 16)
#TODO: Resolve labels in calls
def registerLabel(ins: str):
"""Registers a label for later replacement"""
global labels #Get labels
global PC #Get PC
label, addr = ins.split(sep=':')
if label in labels:
raise RedefinedLabelError(label)
labels[label] = int(addr) if addr != '' else PC
# -- Defines --
def resolveDefines(ins: str) -> str:
global defines
for define in defines:
ins = ins.replace(define, defines[define])
return ins
def registerDefine(ins: str):
"""
Registers a define for replacement on subsequent lines
A define is of format
```asm
.define identifier text...
"""
global defines, preprocessor
if 'defines' not in globals():
defines = {}
#Define is of format .define [identifier] [any text]
#Space(s) not required, but if spaces are not used, ':' or '=' must be used in its place
define: tuple = re.match(r'.define\s*(\w+)[\s:=]+(.*)\s*', ins).groups()
if define != ():
label, replacement = define
defines[label] = replacement
registerPreprocessorHook(resolveDefines)
def registerJumpInstruction(PC, label):
"""Defer jump offset calculation until labels are defined"""
global jumps #Get jump instructions
jumps[PC] = label
registerPostprocessorHook(resolveJumps)
def assemble(ins):
"""Assemble a single instruction, and append results to the output stream."""
opcode, notUsed = getOpcode(ins)
if opcode in jumpOpcodes:
return assembleJumpInstruction(ins)
elif opcode in oneOpOpcodes:
return assembleOneOpInstruction(ins)
elif opcode in twoOpOpcodes:
return assembleTwoOpInstruction(ins)
elif opcode in emulatedOpcodes:
return assembleEmulatedInstruction(ins)
else:
raise OpcodeError(opcode)
def assembleEmulatedInstruction(ins):
"""Assembles a zero- or one-operand 'emulated' instruction."""
#Emulated instructions are either zero or one operand instructions.
opcode, notUsed = getOpcode(ins)
if '{reg}' in emulatedOpcodes[opcode]:
register = ins[ins.find(' ') + 1 : ]
ins = emulatedOpcodes[opcode].format(reg=register)
else:
ins = emulatedOpcodes[opcode]
return assemble(ins)
def assembleOneOpInstruction(ins):
"""Assembles a one-operand (format I) instruction."""
out = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
out[0:6] = '000100' #One op identifier
opcode, byteMode = getOpcode(ins)
out[6:9] = bitrep(oneOpOpcodes.index(opcode), 3)
out[9] = bitrep(byteMode, 1)
#Figure out where the operand is
start = ins.find(' ') + 1
reg = ins[start :]
#We need to provide the opcode here to detect the push bug; see the function itself
extensionWord, adrmode, regID = assembleRegister(reg, opcode=opcode)
out[10:12] = bitrep(adrmode, 2)
out[12:] = bitrep(regID, 4)
appendWord(int(''.join(str(e) for e in out), 2))
if extensionWord:
appendWord(int(extensionWord, 16))
def assembleTwoOpInstruction(ins):
"""Assembles a two-operand (format III) instruction."""
out = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
opcode, byteMode = getOpcode(ins)
out[0:4] = bitrep(twoOpOpcodes.index(opcode), 4)
out[9] = bitrep(byteMode, 1)
#Find the location of the first operand
start = ins.find(' ') + 1
end = ins.find(',')
regSrc = ins[start : end]
extensionWordSrc, adrmodeSrc, regIDSrc = assembleRegister(regSrc)
out[10:12] = bitrep(adrmodeSrc, 2)
out[4:8] = bitrep(regIDSrc, 4)
#Figure out where the comment is
start = end + 2 #Right after the comma, and the space after the comma
regDest = ins[start :]
extensionWordDest, adrmodeDest, regIDDest = assembleRegister(regDest, isDestReg = True)
out[8] = bitrep(adrmodeDest, 1)
out[12:] = bitrep(regIDDest, 4)
appendWord(int(''.join(str(e) for e in out), 2))
if extensionWordSrc:
appendWord(int(extensionWordSrc, 16))
if extensionWordDest:
appendWord(int(extensionWordDest, 16))
def assembleJumpInstruction(ins):
"""Assembles a jump instruction. If the offset is supplied, it is assembled
immediately. Otherwise, if a label is provided, resolution of the offset is delayed
so that all labels can be read (including those further ahead in the instruction stream)."""
out = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
out[0:3] = '001' #Jump identifier
opcode, byteMode = getOpcode(ins)
if byteMode: #Cannot have "jmp.b", how does that even make sense
raise OpcodeError(opcode + '.b')
out[3:6] = bitrep(jumpOpcodes.index(opcode), 3)
#Figure out where the operand is
start = ins.find(' ') + 1
dest = ''.join(ins[start :].split()) #Remove whitespace
#Immediate offset
char1 = dest[0]
#Is this a number?
if re.match(r'[+\-]?[0x|0b]?[0-9A-Fa-f]+', dest):
offset = int(dest, 16)
if offset % 2 != 0:
raise JumpOffsetError(dest, "Jump offset cannot be odd.")
if offset <= -0x3fe or offset >= 0x400:
raise JumpOffsetError(dest, "Jump offset out of range. Range is -3fe bytes through +400 bytes.")
#Jump offsets are multiplied by two, added by two (PC increment), and sign extended
out[6:] = bitrep((offset - 2) // 2, 10)
else:
registerJumpInstruction(PC, dest)
appendWord(int(''.join(str(e) for e in out), 2))
def getRegister(registerName: str):
"""Decodes special register names (or normal register names)."""
registerName = registerName.strip().lower() #Strip leading and trailing whitespace, and convert to lowercase
specialRegisterNames = {'pc': 0, 'sp': 1, 'sr': 2, 'cg': 3}
if registerName in specialRegisterNames:
return specialRegisterNames[registerName]
elif registerName.startswith('r'):
#FIXME: this allows registers with any integer name
return int(registerName[1:]) #Remove 'r'
else:
raise RegisterError(registerName)
def getOpcode(ins: str):
"""Returns the opcode and whether byte mode is being used."""
#Split the opcode on characters that can't be used in an identifier
#Example: [mov].b r15, r15
opcode = re.split(r'[\.\W]', ins)[0]
byteMode = False
if '.b' in ins:
byteMode = True
return opcode, byteMode
def appendWord(word: int):
"""Add a word to the output instruction stream, handling little endian format."""
global PC #Get PC
global output #Get output
#Append in little-endian format
strword = hexrep(word, 4)
output.append(int(strword[2:] + strword[0:2], 16))
PC += 1
def assembleRegister(reg: str, opcode=None, isDestReg = False):
"""Assembles an operand, returning the extension word used (if applicable),
the addressing mode, and the register ID."""
extensionWord = None
adrmode = 0
regID = 0
if '(' in reg: #Indexed mode (mode 1)
extensionWord = reg[0 : reg.find('(')]
adrmode = 1
regID = getRegister(reg[reg.find('(') + 1 : reg.find(')')])
elif '@' in reg and '+' in reg: #Indirect with post-increment mode (mode 3)
#Destinations don't support indirect or indirect + post-increment.
if isDestReg:
raise AddressingModeError(reg,
'Cannot use indirect with post-increment form for destination register.')
adrmode = 3
regID = getRegister(reg[reg.find('@') + 1 : reg.find('+')])
elif '@' in reg: #Indirect mode (mode 2)
#Destinations don't support indirect or indirect + post-increment.
#Indirect can be faked with an index of 0. What a waste.
if isDestReg:
adrmode = 1
extensionWord = 0
else:
adrmode = 2
regID = getRegister(reg[reg.find('@') + 1 : ])
elif '#' in reg: #Use PC to specify an immediate constant
if isDestReg:
raise AddressingModeError(reg,
'Because immediates are encoded as @pc+, immediates cannot be used for ' +
'destinations.\nConsider using &dest absolute addressing form instead.')
adrmode = 3
regID = 0
constant = reg[reg.find('#') + 1 :].strip()
#This might be an immediate constant supported by the hardware
#A CPU bug prevents push #4 and push #8 with r2/SR encoding from working,
#so one must simply use a 16-bit immediate there (what a waste, again)
if constant == '4' and opcode != 'push':
regID = 2
adrmode = 2
elif constant == '8' and opcode != 'push':
regID = 2
adrmode = 3
elif constant == '0':
regID = 3
adrmode = 0
elif constant == '1':
regID = 3
adrmode = 1
elif constant == '2':
regID = 3
adrmode = 2
elif constant == '-1' or constant.lower() == '0xffff':
regID = 3
adrmode = 3
else:
extensionWord = constant
elif '&' in reg: #Direct addressing. An extension word is fetched and used as the raw address.
regID = 2
adrmode = 1
extensionWord = reg[reg.find('&') + 1 : ]
else: #Regular register access (mode 0)
adrmode = 0
regID = getRegister(reg)
return extensionWord, adrmode, regID