Conlang/libconlang/src/parser.rs
John ccfddcc09a Conlang: Add range operators
TODO: Limit range operators to at most 2 operands
2023-10-22 18:30:00 -05:00

556 lines
18 KiB
Rust

//! Parses [tokens](super::token) into an [AST](super::ast)
use super::{
ast::preamble::*,
lexer::Lexer,
token::{Keyword, Token, TokenData, Type},
};
use error::{Error, Reason::*, *};
pub mod error {
use super::{Token, Type};
use std::fmt::Display;
#[derive(Clone, Debug, Default, PartialEq, Eq)]
pub enum Reason {
Expected(Type),
Unexpected(Type),
NotIdentifier,
NotOperator,
NotLiteral,
NotString,
NotChar,
NotBool,
NotFloat,
NotInt,
FloatExponentOverflow,
FloatMantissaOverflow,
IntOverflow,
NotBranch,
IncompleteBranch,
EndOfFile,
PanicStackUnderflow,
#[default]
Unspecified,
}
use Reason::*;
impl Display for Reason {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Self::Expected(t) => write!(f, "Expected {t}"),
Self::Unexpected(t) => write!(f, "Unexpected {t} in bagging area"),
Self::NotIdentifier => "Not an identifier".fmt(f),
Self::NotOperator => "Not an operator".fmt(f),
Self::NotLiteral => "Not a literal".fmt(f),
Self::NotString => "Not a string".fmt(f),
Self::NotChar => "Not a char".fmt(f),
Self::NotBool => "Not a bool".fmt(f),
Self::NotFloat => "Not a float".fmt(f),
Self::FloatExponentOverflow => "Float exponent too large".fmt(f),
Self::FloatMantissaOverflow => "Float mantissa too large".fmt(f),
Self::NotInt => "Not an integer".fmt(f),
Self::IntOverflow => "Integer too large".fmt(f),
Self::IncompleteBranch => "Branch expression was incomplete".fmt(f),
Self::NotBranch => "Expected branch expression".fmt(f),
Self::EndOfFile => "Got end of file".fmt(f),
Self::PanicStackUnderflow => "Could not recover from panic".fmt(f),
Self::Unspecified => {
"Unspecified error. You are permitted to slap the code author.".fmt(f)
}
}
}
}
/// [Parser](super::Parser) [Result]
pub type PResult<T> = Result<T, Error>;
#[derive(Clone, Debug, Default, PartialEq)]
pub struct Error {
reason: Reason,
start: Option<Token>,
}
impl Display for Error {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
if let Some(token) = &self.start {
write!(f, "{}:{}: ", token.line(), token.col())?;
}
write!(f, "{}", self.reason)
}
}
macro error_impl($($fn:ident$(($($p:ident: $t:ty),*))?: $reason:expr),*$(,)?) {$(
/// Creates an [Error] with this [Reason]:
#[doc = concat!("[`", stringify!($reason), "`]")]
pub fn $fn($($($p : $t),*)?) -> Self {
Self { reason: $reason$(($($p)*))?, start: None }
}
)*}
impl Error {
pub fn token(self, start: Token) -> Self {
Self { start: Some(start), ..self }
}
pub fn maybe_token(self, start: Option<Token>) -> Self {
Self { start, ..self }
}
pub fn start(&self) -> Option<&Token> {
self.start.as_ref()
}
pub fn reason(self, reason: Reason) -> Self {
Self { reason, ..self }
}
error_impl! {
expected(e: Type): Expected,
unexpected(e: Type): Unexpected,
not_identifier: NotIdentifier,
not_operator: NotOperator,
not_literal: NotLiteral,
not_string: NotString,
not_char: NotChar,
not_bool: NotBool,
not_float: NotFloat,
float_exponent_overflow: FloatExponentOverflow,
float_mantissa_overflow: FloatMantissaOverflow,
not_int: NotInt,
int_overflow: IntOverflow,
not_branch: NotBranch,
end_of_file: EndOfFile,
panic_underflow: PanicStackUnderflow,
unspecified: Unspecified,
}
}
}
/// The Parser performs recursive descent on the AST's grammar
/// using a provided [Lexer].
pub struct Parser {
tokens: Vec<Token>,
panic_stack: Vec<usize>,
curr: usize,
}
impl<'t> From<Lexer<'t>> for Parser {
fn from(value: Lexer<'t>) -> Self {
let mut tokens = vec![];
for result in value {
match result {
Ok(t) => tokens.push(t),
Err(e) => println!("{e}"),
}
}
Self::new(tokens)
}
}
impl Parser {
/// Create a new [Parser] from a list of [Tokens][1]
/// and the [text](str) used to generate that list
/// (as [Tokens][1] do not store their strings)
///
/// [1]: Token
pub fn new(tokens: Vec<Token>) -> Self {
Self { tokens, panic_stack: vec![], curr: 0 }
}
/// Parse the [start of an AST](Start)
pub fn parse(&mut self) -> PResult<Start> {
self.consume_comments();
Ok(Start(self.expr()?))
}
/// Consumes any consecutive comments
fn consume_comments(&mut self) -> &mut Self {
while let Ok(Type::Comment) = self.peek().map(|t| t.ty()) {
self.curr += 1;
}
self
}
/// Consume the current token
#[inline]
pub fn consume(&mut self) -> &mut Self {
self.curr += 1;
self.consume_comments();
self
}
/// Peek at the current token
pub fn peek(&self) -> PResult<&Token> {
self.tokens
.get(self.curr)
.ok_or(Error::end_of_file().maybe_token(self.tokens.last().cloned()))
}
/// Records the current position on the panic stack
pub fn mark(&mut self) -> &mut Self {
self.panic_stack.push(self.curr);
self
}
/// Erases a recorded position from the panic stack
pub fn unmark(&mut self) -> &mut Self {
self.panic_stack.pop();
self
}
/// Unwinds the panic stack one step
pub fn unwind(&mut self) -> PResult<&mut Self> {
let v = self.panic_stack.pop().ok_or(Error::panic_underflow())?;
self.curr = v;
Ok(self)
}
pub fn advance_until(&mut self, t: Type) -> PResult<&mut Self> {
while self.matches(t).is_err() {
self.check_eof()
.map_err(|e| e.reason(Expected(t)))?
.consume();
}
Ok(self)
}
}
/// Helpers
impl Parser {
fn consume_type(&mut self, t: Type) -> PResult<&mut Self> {
self.matches(t)?;
Ok(self.consume())
}
fn check_eof(&mut self) -> PResult<&mut Self> {
if self.curr < self.tokens.len() {
Ok(self)
} else {
Err(Error::end_of_file().maybe_token(self.tokens.last().cloned()))
}
}
fn todo_error(&mut self, l: u32, c: u32, s: &str) -> Error {
eprintln!("TODO: {s}:{l}:{c}");
Error::unspecified().token(self.peek().unwrap().clone())
}
fn matches(&mut self, e: Type) -> PResult<&Token> {
let t = self.check_eof()?.peek().expect("self should not be eof");
if t.ty() != e {
Err(Error::expected(e).token(t.clone()))?
}
Ok(t)
}
fn keyword(&mut self, keyword: Keyword) -> PResult<&mut Self> {
self.consume_type(Type::Keyword(keyword))
}
fn delimited<F, R>(&mut self, lhs: Type, mid: F, rhs: Type) -> PResult<R>
where F: Fn(&mut Self) -> PResult<R> {
self.consume_type(lhs)?.mark();
let out = match mid(self) {
Ok(out) => out,
Err(e) => {
eprintln!("{e}");
// Jump back in time and try to re-parse from the next brace
self.unwind()?.advance_until(lhs)?.mark();
return self.delimited(lhs, mid, rhs);
}
};
self.consume_type(rhs)?.unmark();
Ok(out)
}
}
macro ptodo_err($self:expr $(, $t:expr)*) {
$($t;)*
$self.todo_error(line!(), column!(), file!())
}
macro ptodo($self:expr $(, $t:expr)*) {
$($t;)*
Err(ptodo_err!($self))
}
/// # Terminals and Pseudo-Terminals
impl Parser {
fn identifier(&mut self) -> PResult<Identifier> {
let out = match self.matches(Type::Identifier)?.data() {
TokenData::Identifier(id) => Identifier(id.to_string()),
_ => Err(Error::not_identifier())?,
};
self.consume();
Ok(out)
}
fn literal(&mut self) -> PResult<literal::Literal> {
use literal::Literal::*;
use Keyword::{False, True};
let token = self.peek()?;
match token.ty() {
Type::Float => self.float().map(Float),
Type::Integer => self.int().map(Int),
Type::String => self.string().map(String),
Type::Character => self.char().map(Char),
Type::Keyword(True | False) => self.bool().map(Bool),
_ => Err(Error::not_literal().token(token.clone())),
}
}
fn float(&mut self) -> PResult<literal::Float> {
ptodo!(self)
}
fn int(&mut self) -> PResult<u128> {
let out = match self.matches(Type::Integer)?.data() {
TokenData::Integer(i) => *i,
_ => Err(Error::not_int())?,
};
self.consume();
Ok(out)
}
fn string(&mut self) -> PResult<String> {
let out = match self.matches(Type::String)?.data() {
TokenData::String(s) => s.clone(),
_ => Err(Error::not_string())?,
};
self.consume();
Ok(out)
}
fn char(&mut self) -> PResult<char> {
let out = match self.matches(Type::Character)?.data() {
TokenData::Character(c) => *c,
_ => Err(Error::not_char())?,
};
self.consume();
Ok(out)
}
fn bool(&mut self) -> PResult<bool> {
use Keyword::{False, True};
let token = self.peek()?;
let out = match token.ty() {
Type::Keyword(False) => false,
Type::Keyword(True) => true,
_ => Err(Error::not_bool().token(token.clone()))?,
};
self.consume();
Ok(out)
}
}
/// Expressions
impl Parser {
fn expr(&mut self) -> PResult<expression::Expr> {
use expression::Expr;
Ok(Expr { ignore: self.ignore()? })
}
fn block(&mut self) -> PResult<expression::Block> {
self.delimited(Type::LCurly, |p| p.expr(), Type::RCurly)
.map(|e| expression::Block { expr: Box::new(e) })
}
fn group(&mut self) -> PResult<expression::Group> {
use expression::Group;
let t = self.consume_type(Type::LParen)?.peek()?;
match t.ty() {
Type::RParen => {
self.consume();
Ok(Group::Empty)
}
_ => {
let out = self.expr().map(|expr| Group::Expr(expr.into()));
self.consume_type(Type::RParen)?;
out
}
}
}
fn primary(&mut self) -> PResult<expression::Primary> {
use expression::Primary;
let token = self.peek()?;
match token.ty() {
Type::Identifier => self.identifier().map(Primary::Identifier),
Type::String
| Type::Character
| Type::Integer
| Type::Float
| Type::Keyword(Keyword::True | Keyword::False) => self.literal().map(Primary::Literal),
Type::LCurly => self.block().map(Primary::Block),
Type::LParen => self.group().map(Primary::Group),
Type::Keyword(_) => self.flow().map(Primary::Branch),
e => Err(Error::unexpected(e).token(token.clone()))?,
}
}
}
/// Helper macro for math parsing subexpressions with production
/// ```ebnf
/// Ret = a (b a)*
/// ```
/// # Examples
/// ```rust,ignore
/// binary!{
/// function_name: ret::Value = parse_operands, parse_operators;
/// }
/// ```
/// becomes
/// ```rust,ignore
/// fn function_name(&mut self) -> PResult<ret::Value> { ... }
/// ```
macro binary ($($f:ident = $a:ident, $b:ident);*$(;)?) {$(
fn $f (&mut self) -> PResult<math::Operation> {
let (first, mut others) = (self.$a()?, vec![]);
while let Ok(op) = self.$b() {
others.push((op, self.$a()?));
}
Ok(if others.is_empty() { first } else {
math::Operation::binary(first, others)
})
}
)*}
/// # [Arithmetic and Logical Subexpressions](math)
impl Parser {
binary! {
//name operands operators
ignore = assign, ignore_op;
assign = compare, assign_op;
compare = range, compare_op;
range = logic, range_op;
logic = bitwise, logic_op;
bitwise = shift, bitwise_op;
shift = term, shift_op;
term = factor, term_op;
factor = unary, factor_op;
}
fn unary(&mut self) -> PResult<math::Operation> {
let mut operators = vec![];
while let Ok(op) = self.unary_op() {
operators.push(op)
}
Ok(math::Operation::Unary { operators, operand: self.primary()? })
}
}
macro operator_impl ($($(#[$m:meta])* $f:ident : {$($type:pat => $op:ident),*$(,)?})*) {
$($(#[$m])* fn $f(&mut self) -> PResult<operator::Binary> {
use operator::Binary;
let token = self.peek()?;
let out = Ok(match token.ty() {
$($type => Binary::$op,)*
_ => Err(Error::not_operator().token(token.clone()))?,
});
self.consume();
out
})*
}
/// # [Operators](operator)
impl Parser {
operator_impl! {
factor_op: {
Type::Star => Mul,
Type::Slash => Div,
Type::Rem => Rem,
}
term_op: {
Type::Plus => Add,
Type::Minus => Sub,
}
shift_op: {
Type::LtLt => Lsh,
Type::GtGt => Rsh,
}
bitwise_op: {
Type::Amp => BitAnd,
Type::Bar => BitOr,
Type::Xor => BitXor,
}
logic_op: {
Type::AmpAmp => LogAnd,
Type::BarBar => LogOr,
Type::XorXor => LogXor,
}
range_op: {
Type::DotDot => RangeExc,
Type::DotDotEq => RangeInc,
}
compare_op: {
Type::Lt => Less,
Type::LtEq => LessEq,
Type::EqEq => Equal,
Type::BangEq => NotEq,
Type::GtEq => GreaterEq,
Type::Gt => Greater,
}
assign_op: {
Type::Eq => Assign,
Type::PlusEq => AddAssign,
Type::MinusEq => SubAssign,
Type::StarEq => MulAssign,
Type::SlashEq => DivAssign,
Type::RemEq => RemAssign,
Type::AmpEq => BitAndAssign,
Type::BarEq => BitOrAssign,
Type::XorEq => BitXorAssign,
Type::LtLtEq => ShlAssign,
Type::GtGtEq => ShrAssign,
}
ignore_op: {
Type::Semi => Ignore,
}
}
/// Parse a [unary operator](operator::Unary)
fn unary_op(&mut self) -> PResult<operator::Unary> {
use operator::Unary;
let token = self.peek()?;
let out = Ok(match token.ty() {
Type::AmpAmp => Unary::RefRef,
Type::Amp => Unary::Ref,
Type::Star => Unary::Deref,
Type::Minus => Unary::Neg,
Type::Bang => Unary::Not,
Type::At => Unary::At,
Type::Hash => Unary::Hash,
Type::Tilde => Unary::Tilde,
_ => Err(Error::not_operator().token(token.clone()))?,
});
self.consume();
out
}
}
/// # [Control Flow](control)
impl Parser {
fn flow(&mut self) -> PResult<control::Flow> {
use control::Flow;
use Keyword::{Break, Continue, For, If, Return, While};
let token = self.peek()?;
match token.ty() {
Type::Keyword(While) => self.parse_while().map(Flow::While),
Type::Keyword(For) => self.parse_for().map(Flow::For),
Type::Keyword(If) => self.parse_if().map(Flow::If),
Type::Keyword(Break) => self.parse_break().map(Flow::Break),
Type::Keyword(Return) => self.parse_return().map(Flow::Return),
Type::Keyword(Continue) => self.parse_continue().map(Flow::Continue),
e => Err(Error::unexpected(e).token(token.clone()))?,
}
.map_err(|e| e.reason(IncompleteBranch))
}
fn parse_if(&mut self) -> PResult<control::If> {
self.keyword(Keyword::If)?;
Ok(control::If {
cond: self.expr()?.into(),
body: self.block()?,
else_: self.parse_else()?,
})
}
fn parse_while(&mut self) -> PResult<control::While> {
self.keyword(Keyword::While)?;
Ok(control::While {
cond: self.expr()?.into(),
body: self.block()?,
else_: self.parse_else()?,
})
}
fn parse_for(&mut self) -> PResult<control::For> {
self.keyword(Keyword::For)?;
Ok(control::For {
var: self.identifier()?,
iter: { self.keyword(Keyword::In)?.expr()?.into() },
body: self.block()?,
else_: self.parse_else()?,
})
}
fn parse_else(&mut self) -> PResult<Option<control::Else>> {
// it's fine for `else` to be missing entirely
self.keyword(Keyword::Else)
.ok()
.map(|p| Ok(control::Else { block: p.block()? }))
.transpose()
}
fn parse_break(&mut self) -> PResult<control::Break> {
Ok(control::Break { expr: self.keyword(Keyword::Break)?.expr()?.into() })
}
fn parse_return(&mut self) -> PResult<control::Return> {
Ok(control::Return { expr: self.keyword(Keyword::Return)?.expr()?.into() })
}
fn parse_continue(&mut self) -> PResult<control::Continue> {
self.keyword(Keyword::Continue)?;
Ok(control::Continue)
}
}