Conlang/libconlang/src/interpreter.rs

553 lines
19 KiB
Rust

//! Interprets an AST as a program
use crate::ast::preamble::*;
use error::{Error, IResult, Reason};
use temp_type_impl::ConValue;
pub mod temp_type_impl {
//! Temporary implementations of Conlang values
use super::error::{Error, IResult, Reason};
use std::ops::*;
/// A Conlang value
///
/// This is a hack to work around the fact that Conlang doesn't have a functioning type system
/// yet :(
#[derive(Clone, Debug)]
pub enum ConValue {
/// The empty/unit `()` type
Empty,
/// An integer
Int(i128),
/// A boolean
Bool(bool),
/// A unicode character
Char(char),
/// A string
String(String),
/// An exclusive range
RangeExc(i128, i128),
/// An inclusive range
RangeInc(i128, i128),
}
impl ConValue {
/// Gets whether the current value is true or false
pub fn truthy(&self) -> IResult<bool> {
match self {
ConValue::Bool(v) => Ok(*v),
_ => Err(Error::with_reason(Reason::TypeError))?,
}
}
pub fn range_exc(self, other: Self) -> IResult<Self> {
let (Self::Int(a), Self::Int(b)) = (self, other) else {
Err(Error::with_reason(Reason::TypeError))?
};
Ok(Self::RangeExc(a, b.saturating_sub(1)))
}
pub fn range_inc(self, other: Self) -> IResult<Self> {
let (Self::Int(a), Self::Int(b)) = (self, other) else {
Err(Error::with_reason(Reason::TypeError))?
};
Ok(Self::RangeInc(a, b))
}
cmp! {
lt: false, <;
lt_eq: true, <=;
eq: true, ==;
neq: false, !=;
gt_eq: true, >=;
gt: false, >;
}
}
/// Templates comparison functions for [ConValue]
macro cmp ($($fn:ident: $empty:literal, $op:tt);*$(;)?) {$(
/// TODO: Remove when functions are implemented:
/// Desugar into function calls
pub fn $fn(&self, other: &Self) -> IResult<Self> {
match (self, other) {
(Self::Empty, Self::Empty) => Ok(Self::Bool($empty)),
(Self::Int(a), Self::Int(b)) => Ok(Self::Bool(a $op b)),
(Self::Bool(a), Self::Bool(b)) => Ok(Self::Bool(a $op b)),
(Self::Char(a), Self::Char(b)) => Ok(Self::Bool(a $op b)),
(Self::String(a), Self::String(b)) => Ok(Self::Bool(a $op b)),
_ => Err(Error::with_reason(Reason::TypeError))
}
}
)*}
/// Implements [From] for an enum with 1-tuple variants
macro from ($($T:ty => $v:expr),*$(,)?) {
$(impl From<$T> for ConValue {
fn from(value: $T) -> Self { $v(value.into()) }
})*
}
from! {
i128 => ConValue::Int,
bool => ConValue::Bool,
char => ConValue::Char,
&str => ConValue::String,
String => ConValue::String,
}
impl From<()> for ConValue {
fn from(_: ()) -> Self {
Self::Empty
}
}
/// Implements binary [std::ops] traits for [ConValue]
///
/// TODO: Desugar operators into function calls
macro ops($($trait:ty: $fn:ident = [$($match:tt)*])*) {
$(impl $trait for ConValue {
type Output = IResult<Self>;
/// TODO: Desugar operators into function calls
fn $fn(self, rhs: Self) -> Self::Output {Ok(match (self, rhs) {$($match)*})}
})*
}
ops! {
Add: add = [
(ConValue::Empty, ConValue::Empty) => ConValue::Empty,
(ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a + b),
(ConValue::String(a), ConValue::String(b)) => ConValue::String(a + &b),
_ => Err(Error::with_reason(Reason::TypeError))?
]
BitAnd: bitand = [
(ConValue::Empty, ConValue::Empty) => ConValue::Empty,
(ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a & b),
(ConValue::Bool(a), ConValue::Bool(b)) => ConValue::Bool(a & b),
_ => Err(Error::with_reason(Reason::TypeError))?
]
BitOr: bitor = [
(ConValue::Empty, ConValue::Empty) => ConValue::Empty,
(ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a | b),
(ConValue::Bool(a), ConValue::Bool(b)) => ConValue::Bool(a | b),
_ => Err(Error::with_reason(Reason::TypeError))?
]
BitXor: bitxor = [
(ConValue::Empty, ConValue::Empty) => ConValue::Empty,
(ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a ^ b),
(ConValue::Bool(a), ConValue::Bool(b)) => ConValue::Bool(a ^ b),
_ => Err(Error::with_reason(Reason::TypeError))?
]
Div: div = [
(ConValue::Empty, ConValue::Empty) => ConValue::Empty,
(ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a / b),
_ => Err(Error::with_reason(Reason::TypeError))?
]
Mul: mul = [
(ConValue::Empty, ConValue::Empty) => ConValue::Empty,
(ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a * b),
_ => Err(Error::with_reason(Reason::TypeError))?
]
Rem: rem = [
(ConValue::Empty, ConValue::Empty) => ConValue::Empty,
(ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a % b),
_ => Err(Error::with_reason(Reason::TypeError))?
]
Shl: shl = [
(ConValue::Empty, ConValue::Empty) => ConValue::Empty,
(ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a << b),
_ => Err(Error::with_reason(Reason::TypeError))?
]
Shr: shr = [
(ConValue::Empty, ConValue::Empty) => ConValue::Empty,
(ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a >> b),
_ => Err(Error::with_reason(Reason::TypeError))?
]
Sub: sub = [
(ConValue::Empty, ConValue::Empty) => ConValue::Empty,
(ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a - b),
_ => Err(Error::with_reason(Reason::TypeError))?
]
}
impl Neg for ConValue {
type Output = IResult<Self>;
fn neg(self) -> Self::Output {
Ok(match self {
ConValue::Empty => ConValue::Empty,
ConValue::Int(v) => ConValue::Int(-v),
_ => Err(Error::with_reason(Reason::TypeError))?,
})
}
}
impl Not for ConValue {
type Output = IResult<Self>;
fn not(self) -> Self::Output {
Ok(match self {
ConValue::Empty => ConValue::Empty,
ConValue::Int(v) => ConValue::Int(!v),
ConValue::Bool(v) => ConValue::Bool(!v),
_ => Err(Error::with_reason(Reason::TypeError))?,
})
}
}
impl std::fmt::Display for ConValue {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
ConValue::Empty => "Empty".fmt(f),
ConValue::Int(v) => v.fmt(f),
ConValue::Bool(v) => v.fmt(f),
ConValue::Char(v) => write!(f, "'{v}'"),
ConValue::String(v) => write!(f, "\"{v}\""),
ConValue::RangeExc(a, b) => write!(f, "{a}..{}", b + 1),
ConValue::RangeInc(a, b) => write!(f, "{a}..={b}"),
}
}
}
}
/// A work-in-progress tree walk interpreter for Conlang
#[derive(Clone, Debug, Default)]
pub struct Interpreter {
stack: Vec<ConValue>,
}
impl Interpreter {
/// Creates a new [Interpreter]
pub fn new() -> Self {
Default::default()
}
/// Interprets the [Start] of a syntax tree
pub fn interpret(&mut self, start: &Start) -> IResult<()> {
self.visit(start)
}
/// Evaluates a single [Expression](expression::Expr) and returns the value stack.
pub fn eval(&mut self, expr: &expression::Expr) -> IResult<Vec<ConValue>> {
self.visit_expr(expr)?;
Ok(std::mem::take(&mut self.stack))
}
fn push(&mut self, value: impl Into<ConValue>) {
self.stack.push(value.into())
}
fn peek(&mut self) -> IResult<&ConValue> {
self.stack
.last()
.ok_or(Error::with_reason(Reason::StackUnderflow))
}
fn pop(&mut self) -> IResult<ConValue> {
self.stack
.pop()
.ok_or(Error::with_reason(Reason::StackUnderflow))
}
fn pop_two(&mut self) -> IResult<(ConValue, ConValue)> {
Ok((self.pop()?, self.pop()?))
}
}
impl Visitor<IResult<()>> for Interpreter {
fn visit_program(&mut self, prog: &Program) -> IResult<()> {
for stmt in &prog.0 {
self.visit_statement(stmt)?;
}
Ok(())
}
fn visit_statement(&mut self, stmt: &Stmt) -> IResult<()> {
match stmt {
Stmt::Let { name, mutable, ty, init } => todo!(
"let{} {name:?}: {ty:?} = {init:?}",
if *mutable { " mut" } else { "" }
),
Stmt::Expr(e) => {
self.visit_expr(e)?;
self.pop().map(drop)
}
}
}
fn visit_operation(&mut self, expr: &math::Operation) -> IResult<()> {
use math::Operation;
// TODO: the indentation depth here is driving me insane.
// maybe refactor the ast to break binary and unary
// operations into their own nodes, and use
// Operation to unify them?
match expr {
Operation::Binary { first, other } => {
self.visit_operation(first)?;
for (op, other) in other {
match op {
operator::Binary::LogAnd => {
if self.peek()?.truthy()? {
self.pop()?;
self.visit_operation(other)?;
}
}
operator::Binary::LogOr => {
if !self.peek()?.truthy()? {
self.pop()?;
self.visit_operation(other)?;
}
}
operator::Binary::LogXor => {
let first = self.pop()?.truthy()?;
self.visit_operation(other)?;
let second = self.pop()?.truthy()?;
self.push(first ^ second);
}
_ => {
self.visit_operation(other)?;
self.visit_binary_op(op)?;
}
}
}
Ok(())
}
Operation::Unary { operators, operand } => {
self.visit_primary(operand)?;
for op in operators.iter().rev() {
self.visit_unary_op(op)?;
}
Ok(())
}
}
}
fn visit_binary_op(&mut self, op: &operator::Binary) -> IResult<()> {
use operator::Binary;
let (second, first) = self.pop_two()?;
self.push(match op {
Binary::Mul => first * second,
Binary::Div => first / second,
Binary::Rem => first % second,
Binary::Add => first + second,
Binary::Sub => first - second,
Binary::Lsh => first << second,
Binary::Rsh => first >> second,
Binary::BitAnd => first & second,
Binary::BitOr => first | second,
Binary::BitXor => first ^ second,
Binary::LogAnd | Binary::LogOr | Binary::LogXor => {
unimplemented!("Implemented in visit_operation")
}
Binary::RangeExc => first.range_exc(second),
Binary::RangeInc => first.range_inc(second),
Binary::Less => first.lt(&second),
Binary::LessEq => first.lt_eq(&second),
Binary::Equal => first.eq(&second),
Binary::NotEq => first.neq(&second),
Binary::GreaterEq => first.gt_eq(&second),
Binary::Greater => first.gt(&second),
Binary::Assign => todo!("Assignment"),
Binary::AddAssign => todo!("Assignment"),
Binary::SubAssign => todo!("Assignment"),
Binary::MulAssign => todo!("Assignment"),
Binary::DivAssign => todo!("Assignment"),
Binary::RemAssign => todo!("Assignment"),
Binary::BitAndAssign => todo!("Assignment"),
Binary::BitOrAssign => todo!("Assignment"),
Binary::BitXorAssign => todo!("Assignment"),
Binary::ShlAssign => todo!("Assignment"),
Binary::ShrAssign => todo!("Assignment"),
}?);
Ok(())
}
fn visit_unary_op(&mut self, op: &operator::Unary) -> IResult<()> {
let operand = self.pop()?;
self.push(match op {
operator::Unary::RefRef => todo!(),
operator::Unary::Ref => todo!(),
operator::Unary::Deref => todo!(),
operator::Unary::Neg => (-operand)?,
operator::Unary::Not => (!operand)?,
operator::Unary::At => todo!(),
operator::Unary::Hash => {
println!("{operand}");
operand
}
operator::Unary::Tilde => todo!(),
});
Ok(())
}
fn visit_if(&mut self, expr: &control::If) -> IResult<()> {
self.visit_expr(&expr.cond)?;
if self.pop()?.truthy()? {
self.visit_block(&expr.body)?;
} else if let Some(block) = &expr.else_ {
self.visit_else(block)?;
}
Ok(())
}
fn visit_while(&mut self, expr: &control::While) -> IResult<()> {
let mut broke = false;
while {
self.visit_expr(&expr.cond)?;
self.pop()?.truthy()?
} {
let Err(out) = self.visit_block(&expr.body) else {
// Every expression returns a value. If allowed to pile up, they'll overflow the
// stack.
self.pop()?;
continue;
};
match out.reason() {
Reason::Continue => continue,
Reason::Break(value) => {
self.push(value);
broke = true;
break;
}
r => Err(Error::with_reason(r))?,
}
}
if let (Some(r#else), false) = (&expr.else_, broke) {
self.visit_else(r#else)?;
}
Ok(())
}
fn visit_for(&mut self, expr: &control::For) -> IResult<()> {
self.visit_expr(&expr.iter)?;
let mut broke = false;
let bounds = match self.pop()? {
ConValue::RangeExc(a, b) | ConValue::RangeInc(a, b) => (a, b),
_ => Err(Error::with_reason(Reason::NotIterable))?,
};
for _ in bounds.0..=bounds.1 {
let Err(out) = self.visit_block(&expr.body) else {
self.pop()?;
continue;
};
match out.reason() {
Reason::Continue => continue,
Reason::Break(value) => {
self.push(value);
broke = true;
break;
}
r => Err(Error::with_reason(r))?,
}
}
if let (Some(r#else), false) = (&expr.else_, broke) {
self.visit_else(r#else)?;
}
Ok(())
}
fn visit_else(&mut self, else_: &control::Else) -> IResult<()> {
self.visit_block(&else_.block)
}
fn visit_continue(&mut self, _: &control::Continue) -> IResult<()> {
Err(Error::cnt())
}
fn visit_break(&mut self, brk: &control::Break) -> IResult<()> {
Err(Error::brk({
self.visit_expr(&brk.expr)?;
self.pop()?
}))
}
fn visit_return(&mut self, ret: &control::Return) -> IResult<()> {
Err(Error::ret({
self.visit_expr(&ret.expr)?;
self.pop()?
}))
}
fn visit_identifier(&mut self, ident: &Identifier) -> IResult<()> {
todo!("Identifier lookup and scoping rules: {ident:?}")
}
fn visit_string_literal(&mut self, string: &str) -> IResult<()> {
self.push(string);
Ok(())
}
fn visit_char_literal(&mut self, char: &char) -> IResult<()> {
self.push(*char);
Ok(())
}
fn visit_bool_literal(&mut self, bool: &bool) -> IResult<()> {
self.push(*bool);
Ok(())
}
fn visit_float_literal(&mut self, float: &literal::Float) -> IResult<()> {
todo!("visit floats in interpreter: {float:?}")
}
fn visit_int_literal(&mut self, int: &u128) -> IResult<()> {
self.push((*int) as i128);
Ok(())
}
fn visit_empty(&mut self) -> IResult<()> {
self.push(());
Ok(())
}
}
pub mod error {
//! The [Error] type represents any error thrown by the [Interpreter](super::Interpreter)
use super::temp_type_impl::ConValue;
pub type IResult<T> = Result<T, Error>;
/// Represents any error thrown by the [Interpreter](super::Interpreter)
#[derive(Clone, Debug)]
pub struct Error {
reason: Reason,
}
impl Error {
/// Returns the [Reason] for this error
pub fn reason(self) -> Reason {
self.reason
}
/// Creates an error with a given [Reason]
pub(crate) fn with_reason(reason: Reason) -> Self {
Self { reason }
}
/// Creates a [Return](Reason::Return) error, with the given [value](ConValue)
pub fn ret(value: ConValue) -> Self {
Self { reason: Reason::Return(value) }
}
/// Creates a [Break](Reason::Break) error, with the given [value](ConValue)
pub fn brk(value: ConValue) -> Self {
Self { reason: Reason::Break(value) }
}
/// Creates a [Continue](Reason::Continue) error
pub fn cnt() -> Self {
Self { reason: Reason::Continue }
}
}
/// The reason for the [Error]
#[derive(Clone, Debug)]
pub enum Reason {
/// Propagate a Return value
Return(ConValue),
/// Propagate a Break value
Break(ConValue),
/// Continue to the next iteration of a loop
Continue,
/// Underflowed the stack
StackUnderflow,
/// Type incompatibility
// TODO: store the type information in this error
TypeError,
/// In clause of For loop didn't yield a Range
NotIterable,
}
impl std::error::Error for Error {}
impl std::fmt::Display for Error {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.reason.fmt(f)
}
}
impl std::fmt::Display for Reason {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Reason::Return(value) => write!(f, "return {value:?}"),
Reason::Break(value) => write!(f, "break {value:?}"),
Reason::Continue => "continue".fmt(f),
Reason::StackUnderflow => "Stack underflow".fmt(f),
Reason::TypeError => "Type error".fmt(f),
Reason::NotIterable => "`in` clause of `for` loop did not yield an iterable".fmt(f),
}
}
}
}