4 Commits

Author SHA1 Message Date
4d6b94b570 conlang: Bump version to v0.0.6
- Major milestone: cl-typeck doesn't suck as much!
2024-07-25 05:56:05 -05:00
fe2b816f27 cl-typeck: Crate-spanning refactor part 2
- Removed all unreferenced files
- Reimplemented missing/nonfunctional behavior
- Added module documentation for most things
  - TODO: item-level docs on Entry(Mut)
- Reparented the stages of Table population into the `stage` module.
  - TODO: rewrite type inference to use only the tools provided by Table.
2024-07-25 05:55:11 -05:00
e19127facc cl-typeck: Crate-spanning refactor
TODO: remove all unreferenced files
TODO: Finish resolving statically known types of values
TODO: Type inference
2024-07-24 18:22:42 -05:00
b7ad285a11 cl-typeck: give Handle accessors for useful attributes 2024-07-24 14:29:27 -05:00
24 changed files with 1586 additions and 1940 deletions

View File

@@ -15,7 +15,7 @@ resolver = "2"
[workspace.package] [workspace.package]
repository = "https://git.soft.fish/j/Conlang" repository = "https://git.soft.fish/j/Conlang"
version = "0.0.5" version = "0.0.6"
authors = ["John Breaux <j@soft.fish>"] authors = ["John Breaux <j@soft.fish>"]
edition = "2021" edition = "2021"
license = "MIT" license = "MIT"

View File

@@ -1,17 +1,11 @@
use cl_typeck::{entry::Entry, stage::*, table::Table, type_expression::TypeExpression};
use cl_ast::{ use cl_ast::{
ast_visitor::{Fold, Visit}, ast_visitor::{Fold, Visit},
desugar::*, desugar::*,
}; };
use cl_lexer::Lexer; use cl_lexer::Lexer;
use cl_parser::{inliner::ModuleInliner, Parser}; use cl_parser::{inliner::ModuleInliner, Parser};
use cl_typeck::{
definition::Def,
handle::Handle,
name_collector::NameCollector,
node::{Node, NodeSource},
project::Project,
type_resolver::resolve,
};
use repline::{error::Error as RlError, prebaked::*}; use repline::{error::Error as RlError, prebaked::*};
use std::{error::Error, path}; use std::{error::Error, path};
@@ -21,7 +15,7 @@ const STDLIB_DISPLAY_PATH: &str = "stdlib/lib.cl";
const STDLIB: &str = include_str!("../../../stdlib/lib.cl"); const STDLIB: &str = include_str!("../../../stdlib/lib.cl");
// Colors // Colors
const C_MAIN: &str = ""; const C_MAIN: &str = C_LISTING;
const C_RESV: &str = "\x1b[35m"; const C_RESV: &str = "\x1b[35m";
const C_CODE: &str = "\x1b[36m"; const C_CODE: &str = "\x1b[36m";
const C_BYID: &str = "\x1b[95m"; const C_BYID: &str = "\x1b[95m";
@@ -33,7 +27,7 @@ const C_LISTING: &str = "\x1b[38;5;117m";
static mut TREES: TreeManager = TreeManager::new(); static mut TREES: TreeManager = TreeManager::new();
fn main() -> Result<(), Box<dyn Error>> { fn main() -> Result<(), Box<dyn Error>> {
let mut prj = Project::default(); let mut prj = Table::default();
let mut parser = Parser::new(Lexer::new(STDLIB)); let mut parser = Parser::new(Lexer::new(STDLIB));
let code = match parser.file() { let code = match parser.file() {
@@ -44,13 +38,14 @@ fn main() -> Result<(), Box<dyn Error>> {
} }
}; };
let code = inline_modules(code, concat!(env!("PWD"), "/stdlib")); let code = inline_modules(code, concat!(env!("PWD"), "/stdlib"));
NameCollector::new(&mut prj).visit_file(unsafe { TREES.push(code) }); Populator::new(&mut prj).visit_file(unsafe { TREES.push(code) });
// NameCollector::new(&mut prj).visit_file(unsafe { TREES.push(code) });
main_menu(&mut prj)?; main_menu(&mut prj)?;
Ok(()) Ok(())
} }
fn main_menu(prj: &mut Project) -> Result<(), RlError> { fn main_menu(prj: &mut Table) -> Result<(), RlError> {
banner(); banner();
read_and(C_MAIN, "mu>", "? >", |line| { read_and(C_MAIN, "mu>", "? >", |line| {
match line.trim() { match line.trim() {
@@ -82,7 +77,7 @@ fn main_menu(prj: &mut Project) -> Result<(), RlError> {
}) })
} }
fn enter_code(prj: &mut Project) -> Result<(), RlError> { fn enter_code(prj: &mut Table) -> Result<(), RlError> {
read_and(C_CODE, "cl>", "? >", |line| { read_and(C_CODE, "cl>", "? >", |line| {
if line.trim().is_empty() { if line.trim().is_empty() {
return Ok(Response::Break); return Ok(Response::Break);
@@ -91,8 +86,7 @@ fn enter_code(prj: &mut Project) -> Result<(), RlError> {
let code = inline_modules(code, ""); let code = inline_modules(code, "");
let code = WhileElseDesugar.fold_file(code); let code = WhileElseDesugar.fold_file(code);
// Safety: this is totally unsafe // Safety: this is totally unsafe
NameCollector::new(prj).visit_file(unsafe { TREES.push(code) }); Populator::new(prj).visit_file(unsafe { TREES.push(code) });
Ok(Response::Accept) Ok(Response::Accept)
}) })
} }
@@ -115,22 +109,22 @@ fn live_desugar() -> Result<(), RlError> {
}) })
} }
fn query_type_expression(prj: &mut Project) -> Result<(), RlError> { fn query_type_expression(prj: &mut Table) -> Result<(), RlError> {
read_and(C_RESV, "ty>", "? >", |line| { read_and(C_RESV, "ty>", "? >", |line| {
if line.trim().is_empty() { if line.trim().is_empty() {
return Ok(Response::Break); return Ok(Response::Break);
} }
// parse it as a path, and convert the path into a borrowed path // parse it as a path, and convert the path into a borrowed path
let ty = Parser::new(Lexer::new(line)).ty()?.kind; let ty = Parser::new(Lexer::new(line)).ty()?.kind;
let id = prj.evaluate(&ty, prj.root)?.handle_unchecked(prj); let id = ty.evaluate(prj, prj.root())?;
pretty_handle(id)?; pretty_handle(id.to_entry(prj))?;
Ok(Response::Accept) Ok(Response::Accept)
}) })
} }
fn get_by_id(prj: &mut Project) -> Result<(), RlError> { fn get_by_id(prj: &mut Table) -> Result<(), RlError> {
use cl_structures::index_map::MapIndex; use cl_structures::index_map::MapIndex;
use cl_typeck::handle::DefID; use cl_typeck::handle::Handle;
read_and(C_BYID, "id>", "? >", |line| { read_and(C_BYID, "id>", "? >", |line| {
if line.trim().is_empty() { if line.trim().is_empty() {
return Ok(Response::Break); return Ok(Response::Break);
@@ -143,9 +137,7 @@ fn get_by_id(prj: &mut Project) -> Result<(), RlError> {
let mut path = parser.path().unwrap_or_default(); let mut path = parser.path().unwrap_or_default();
path.absolute = false; path.absolute = false;
let Some(handle) = DefID::from_usize(def_id).handle(prj) else { let handle = Handle::from_usize(def_id).to_entry(prj);
return Ok(Response::Deny);
};
print!(" > {{{C_LISTING}{handle}\x1b[0m}}"); print!(" > {{{C_LISTING}{handle}\x1b[0m}}");
if !path.parts.is_empty() { if !path.parts.is_empty() {
@@ -153,71 +145,105 @@ fn get_by_id(prj: &mut Project) -> Result<(), RlError> {
} }
println!(); println!();
let (ty, value) = handle.navigate((&path).into()); let Some(entry) = handle.nav(&path.parts) else {
if let (None, None) = (ty, value) {
Err("No results.")? Err("No results.")?
} };
if let Some(t) = ty {
println!("Result in type namespace: {}", t.id()); pretty_handle(entry)?;
pretty_handle(t)?;
}
if let Some(v) = value {
println!("Result in value namespace: {}", v.id());
pretty_handle(v)?;
}
Ok(Response::Accept) Ok(Response::Accept)
}) })
} }
fn resolve_all(prj: &mut Project) -> Result<(), Box<dyn Error>> { fn resolve_all(table: &mut Table) -> Result<(), Box<dyn Error>> {
prj.resolve_imports()?; for (id, error) in import(table) {
for id in prj.pool.keys() { eprintln!("{error} in {} ({id})", id.to_entry(table))
resolve(prj, id)?;
} }
println!("Types resolved successfully!"); for handle in table.handle_iter() {
if let Err(error) = handle.to_entry_mut(table).categorize() {
eprintln!("{error}");
}
}
for handle in implement(table) {
eprintln!("Unable to reparent {} ({handle})", handle.to_entry(table))
}
println!("...Resolved!");
Ok(()) Ok(())
} }
fn list_types(prj: &mut Project) { fn list_types(table: &mut Table) {
println!(" name\x1b[30G type"); for handle in table.debug_entry_iter() {
for (idx, key) in prj.pool.keys().enumerate() { let id = handle.id();
let Def { node: Node { vis, kind: source, .. }, .. } = &prj[key]; let kind = handle.kind().unwrap();
let name = match source.as_ref().map(NodeSource::name) { let name = handle.name().unwrap_or("".into());
Some(Some(name)) => name, println!("{id:3}: {name:16}| {kind}: {handle}");
_ => "".into(),
};
print!(
"{idx:3}: {vis}{name}\x1b[30G = {}",
key.handle_unchecked(prj)
);
println!();
} }
} }
fn pretty_handle(handle: Handle) -> Result<(), std::io::Error> { fn pretty_handle(entry: Entry) -> Result<(), std::io::Error> {
use std::io::Write; use std::io::Write;
let mut stdout = std::io::stdout().lock(); let mut out = std::io::stdout().lock();
let Some(Def { module, node: Node { vis, .. }, .. }) = handle.get() else { let Some(kind) = entry.kind() else {
return writeln!(stdout, "Invalid handle: {handle}"); return writeln!(out, "{entry}");
}; };
writeln!(stdout, "{C_LISTING}{vis}{handle}\x1b[0m: {}", handle.id())?; write!(out, "{C_LISTING}{kind}")?;
if let Some(parent) = module.parent {
writeln!(stdout, "{C_LISTING}Parent\x1b[0m: {}", handle.with(parent))?; if let Some(name) = entry.name() {
write!(out, " {name}")?;
} }
if !module.types.is_empty() { writeln!(out, "\x1b[0m ({}): {entry}", entry.id())?;
writeln!(stdout, "{C_LISTING}Types:\x1b[0m")?;
for (name, def) in &module.types { if let Some(parent) = entry.parent() {
writeln!(stdout, "- {C_LISTING}{name}\x1b[0m: {}", handle.with(*def))? writeln!(
out,
"- {C_LISTING}Parent\x1b[0m: {parent} ({})",
parent.id()
)?;
}
if let Some(span) = entry.span() {
writeln!(
out,
"- {C_LISTING}Span:\x1b[0m ({}, {})",
span.head, span.tail
)?;
}
match entry.meta() {
Some(meta) if !meta.is_empty() => {
writeln!(out, "- {C_LISTING}Meta:\x1b[0m")?;
for meta in meta {
writeln!(out, " - {meta}")?;
}
}
_ => {}
}
if let Some(children) = entry.children() {
writeln!(out, "- {C_LISTING}Children:\x1b[0m")?;
for (name, child) in children {
writeln!(
out,
" - {C_LISTING}{name}\x1b[0m ({child}): {}",
entry.with_id(*child)
)?
} }
} }
if !module.values.is_empty() {
writeln!(stdout, "{C_LISTING}Values:\x1b[0m")?; if let Some(imports) = entry.imports() {
for (name, def) in &module.values { writeln!(out, "- {C_LISTING}Imports:\x1b[0m")?;
writeln!(stdout, "- {C_LISTING}{name}\x1b[0m: {}", handle.with(*def))? for (name, child) in imports {
writeln!(
out,
" - {C_LISTING}{name}\x1b[0m ({child}): {}",
entry.with_id(*child)
)?
} }
} }
write!(stdout, "\x1b[0m")
Ok(())
} }
fn inline_modules(code: cl_ast::File, path: impl AsRef<path::Path>) -> cl_ast::File { fn inline_modules(code: cl_ast::File, path: impl AsRef<path::Path>) -> cl_ast::File {

View File

@@ -0,0 +1,184 @@
//! An [Entry] is an accessor for [nodes](Handle) in a [Table].
//!
//! There are two kinds of entry:
//! - [Entry]: Provides getters for an entry's fields, and an implementation of
//! [Display](std::fmt::Display)
//! - [EntryMut]: Provides setters for an entry's fields, and an [`as_ref`](EntryMut::as_ref) method
//! to demote to an [Entry].
use std::collections::HashMap;
use cl_ast::{Meta, PathPart, Sym};
use cl_structures::span::Span;
use crate::{
handle::Handle,
source::Source,
stage::categorize as cat,
table::{NodeKind, Table},
type_expression::{self as tex, TypeExpression},
type_kind::TypeKind,
};
mod display;
impl Handle {
pub const fn to_entry<'t, 'a>(self, table: &'t Table<'a>) -> Entry<'t, 'a> {
Entry { id: self, table }
}
pub fn to_entry_mut<'t, 'a>(self, table: &'t mut Table<'a>) -> EntryMut<'t, 'a> {
EntryMut { id: self, table }
}
}
#[derive(Debug)]
pub struct Entry<'t, 'a> {
table: &'t Table<'a>,
id: Handle,
}
impl<'t, 'a> Entry<'t, 'a> {
pub const fn new(table: &'t Table<'a>, id: Handle) -> Self {
Self { table, id }
}
pub const fn id(&self) -> Handle {
self.id
}
pub fn inner(&self) -> &Table<'a> {
self.table
}
pub const fn with_id(&self, id: Handle) -> Entry<'_, 'a> {
Self { table: self.table, id }
}
pub fn nav(&self, path: &[PathPart]) -> Option<Entry<'_, 'a>> {
Some(Entry { id: self.table.nav(self.id, path)?, table: self.table })
}
pub const fn root(&self) -> Handle {
self.table.root()
}
pub fn kind(&self) -> Option<&NodeKind> {
self.table.kind(self.id)
}
pub fn parent(&self) -> Option<Entry<'_, 'a>> {
Some(Entry { id: *self.table.parent(self.id)?, ..*self })
}
pub fn children(&self) -> Option<&HashMap<Sym, Handle>> {
self.table.children(self.id)
}
pub fn imports(&self) -> Option<&HashMap<Sym, Handle>> {
self.table.imports(self.id)
}
pub fn ty(&self) -> Option<&TypeKind> {
self.table.ty(self.id)
}
pub fn span(&self) -> Option<&Span> {
self.table.span(self.id)
}
pub fn meta(&self) -> Option<&'a [Meta]> {
self.table.meta(self.id)
}
pub fn source(&self) -> Option<&Source<'a>> {
self.table.source(self.id)
}
pub fn impl_target(&self) -> Option<Entry<'_, 'a>> {
Some(Entry { id: self.table.impl_target(self.id)?, ..*self })
}
pub fn selfty(&self) -> Option<Entry<'_, 'a>> {
Some(Entry { id: self.table.selfty(self.id)?, ..*self })
}
pub fn name(&self) -> Option<Sym> {
self.table.name(self.id)
}
}
#[derive(Debug)]
pub struct EntryMut<'t, 'a> {
table: &'t mut Table<'a>,
id: Handle,
}
impl<'t, 'a> EntryMut<'t, 'a> {
pub fn new(table: &'t mut Table<'a>, id: Handle) -> Self {
Self { table, id }
}
pub fn as_ref(&self) -> Entry<'_, 'a> {
Entry { table: self.table, id: self.id }
}
pub const fn id(&self) -> Handle {
self.id
}
/// Evaluates a [TypeExpression] in this entry's context
pub fn evaluate<Out>(&mut self, ty: &impl TypeExpression<Out>) -> Result<Out, tex::Error> {
let Self { table, id } = self;
ty.evaluate(table, *id)
}
pub fn categorize(&mut self) -> Result<(), cat::Error> {
cat::categorize(self.table, self.id)
}
/// Constructs a new Handle with the provided parent [Handle]
pub fn with_id(&mut self, parent: Handle) -> EntryMut<'_, 'a> {
EntryMut { table: self.table, id: parent }
}
pub fn nav(&mut self, path: &[PathPart]) -> Option<EntryMut<'_, 'a>> {
Some(EntryMut { id: self.table.nav(self.id, path)?, table: self.table })
}
pub fn new_entry(&mut self, kind: NodeKind) -> EntryMut<'_, 'a> {
let id = self.table.new_entry(self.id, kind);
self.with_id(id)
}
pub fn add_child(&mut self, name: Sym, child: Handle) -> Option<Handle> {
self.table.add_child(self.id, name, child)
}
pub fn set_ty(&mut self, kind: TypeKind) -> Option<TypeKind> {
self.table.set_ty(self.id, kind)
}
pub fn set_span(&mut self, span: Span) -> Option<Span> {
self.table.set_span(self.id, span)
}
pub fn set_meta(&mut self, meta: &'a [Meta]) -> Option<&'a [Meta]> {
self.table.set_meta(self.id, meta)
}
pub fn set_source(&mut self, source: Source<'a>) -> Option<Source<'a>> {
self.table.set_source(self.id, source)
}
pub fn set_impl_target(&mut self, target: Handle) -> Option<Handle> {
self.table.set_impl_target(self.id, target)
}
pub fn mark_use_item(&mut self) {
self.table.mark_use_item(self.id)
}
pub fn mark_impl_item(&mut self) {
self.table.mark_impl_item(self.id)
}
}

View File

@@ -0,0 +1,102 @@
use super::*;
use crate::{format_utils::*, type_kind::Adt};
use std::fmt::{self, Write};
/// Printing the name of a named type stops infinite recursion
fn write_name_or(h: Entry, f: &mut impl Write) -> fmt::Result {
match h.name() {
Some(name) => write!(f, "{name}"),
None => write!(f, "{h}"),
}
}
impl fmt::Display for Entry<'_, '_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let Some(&kind) = self.kind() else {
return write!(f, "<invalid type: {}>", self.id);
};
if let Some(ty) = self.ty() {
match ty {
TypeKind::Instance(id) => write!(f, "{}", self.with_id(*id)),
TypeKind::Intrinsic(kind) => write!(f, "{kind}"),
TypeKind::Adt(adt) => write_adt(adt, self, f),
&TypeKind::Ref(cnt, id) => {
for _ in 0..cnt {
f.write_str("&")?;
}
let h_id = self.with_id(id);
write_name_or(h_id, f)
}
TypeKind::Slice(id) => {
write_name_or(self.with_id(*id), &mut f.delimit_with("[", "]"))
}
&TypeKind::Array(t, cnt) => {
let mut f = f.delimit_with("[", "]");
write_name_or(self.with_id(t), &mut f)?;
write!(f, "; {cnt}")
}
TypeKind::Tuple(ids) => {
let mut f = f.delimit_with("(", ")");
for (index, &id) in ids.iter().enumerate() {
if index > 0 {
write!(f, ", ")?;
}
write_name_or(self.with_id(id), &mut f)?;
}
Ok(())
}
TypeKind::FnSig { args, rety } => {
write!(f, "fn {} -> ", self.with_id(*args))?;
write_name_or(self.with_id(*rety), f)
}
TypeKind::Empty => write!(f, "()"),
TypeKind::Never => write!(f, "!"),
TypeKind::Module => write!(f, "module?"),
}
} else {
write!(f, "{kind}")
}
}
}
fn write_adt(adt: &Adt, h: &Entry, f: &mut impl Write) -> fmt::Result {
match adt {
Adt::Enum(variants) => {
let mut variants = variants.iter();
separate(", ", || {
variants.next().map(|(name, def)| {
move |f: &mut Delimit<_>| match def {
Some(def) => {
write!(f, "{name}: ")?;
write_name_or(h.with_id(*def), f)
}
None => write!(f, "{name}"),
}
})
})(f.delimit_with("enum {", "}"))
}
Adt::Struct(members) => {
let mut members = members.iter();
separate(", ", || {
let (name, vis, id) = members.next()?;
Some(move |f: &mut Delimit<_>| {
write!(f, "{vis}{name}: ")?;
write_name_or(h.with_id(*id), f)
})
})(f.delimit_with("struct {", "}"))
}
Adt::TupleStruct(members) => {
let mut members = members.iter();
separate(", ", || {
let (vis, def) = members.next()?;
Some(move |f: &mut Delimit<_>| {
write!(f, "{vis}")?;
write_name_or(h.with_id(*def), f)
})
})(f.delimit_with("struct (", ")"))
}
Adt::UnitStruct => write!(f, "struct"),
Adt::Union(_) => todo!("Display union types"),
}
}

View File

@@ -1,187 +1,15 @@
use crate::{definition::Def, path::Path, project::Project}; //! A [Handle] uniquely represents an entry in the [Table](crate::table::Table)
use cl_structures::index_map::*; use cl_structures::index_map::*;
// define the index types // define the index types
make_index! { make_index! {
/// Uniquely represents a [Def][1] in the [Def][1] [Pool] /// Uniquely represents an entry in the [Table](crate::table::Table)
/// Handle,
/// [1]: crate::definition::Def
DefID,
} }
/// A handle to a certain [Def] within a [Project] impl std::fmt::Display for Handle {
#[derive(Clone, Copy, Debug)] fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
pub struct Handle<'prj, 'code> { self.0.fmt(f)
id: DefID,
prj: &'prj Project<'code>,
}
impl DefID {
/// Constructs a new [Handle] from this DefID and the provided [Project].
pub fn handle<'p, 'c>(self, prj: &'p Project<'c>) -> Option<Handle<'p, 'c>> {
Handle::new(self, prj)
}
/// Constructs a new [Handle] from this DefID and the provided [Project]
pub fn handle_unchecked<'p, 'c>(self, prj: &'p Project<'c>) -> Handle<'p, 'c> {
Handle::new_unchecked(self, prj)
}
}
impl<'p, 'c> Handle<'p, 'c> {
/// Constructs a new Handle from the provided [DefID] and [Project].
/// Returns [Some]\(Handle) if the [DefID] exists in the [Project].
pub fn new(id: DefID, prj: &'p Project<'c>) -> Option<Self> {
prj.pool.get(id).is_some().then_some(Self { id, prj })
}
/// Constructs a new Handle from the provided [DefID] and [Project] without checking membership.
/// Using the handle may cause panics or other unwanted (but defined) behavior.
pub fn new_unchecked(id: DefID, prj: &'p Project<'c>) -> Self {
Self { id, prj }
}
/// Gets the [Def] this handle points to.
pub fn get(self) -> Option<&'p Def<'c>> {
self.prj.pool.get(self.id)
}
pub fn navigate(self, path: Path) -> (Option<Self>, Option<Self>) {
match self.prj.get(path, self.id) {
Some((Some(ty), Some(vl), _)) => (Some(self.with(ty)), Some(self.with(vl))),
Some((_, Some(vl), _)) => (None, Some(self.with(vl))),
Some((Some(ty), _, _)) => (Some(self.with(ty)), None),
_ => (None, None),
}
}
/// Gets the [Project] this handle points to.
pub fn project(self) -> &'p Project<'c> {
self.prj
}
pub fn id(self) -> DefID {
self.id
}
// TODO: get parent, children, etc.
/// Gets a handle to the other ID within the same project
pub fn with(self, id: DefID) -> Self {
Self { id, ..self }
}
}
mod display {
use super::*;
use crate::{definition::*, format_utils::*};
use std::fmt::{self, Display, Write};
impl Display for DefID {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.0.fmt(f)
}
}
impl Display for Handle<'_, '_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let Self { id, prj } = *self;
let Some(def) = prj.pool.get(id) else {
return write!(f, "<invalid type: {id}>");
};
// Match the type
match &def.kind {
DefKind::Undecided => write!(f, "<undecided>"),
DefKind::Impl(id) => write!(f, "impl {}", self.with(*id)),
DefKind::Use(id) => write!(f, "use inside {}", self.with(*id)),
DefKind::Type(kind) => match kind {
TypeKind::Alias(None) => write!(f, "type"),
TypeKind::Alias(Some(id)) => write!(f, "{}", self.with(*id)),
TypeKind::Intrinsic(intrinsic) => write!(f, "{intrinsic}"),
TypeKind::Adt(adt) => display_adt(self, adt, f),
TypeKind::Ref(count, id) => {
for _ in 0..*count {
f.write_char('&')?;
}
self.with(*id).fmt(f)
}
TypeKind::Array(id, size) => {
write!(f.delimit_with("[", "]"), "{}; {size}", self.with(*id))
}
TypeKind::Slice(id) => write!(f.delimit_with("[", "]"), "{}", self.with(*id)),
TypeKind::Tuple(ids) => {
let mut ids = ids.iter();
separate(", ", || {
let id = ids.next()?;
Some(move |f: &mut Delimit<_>| write!(f, "{}", self.with(*id)))
})(f.delimit_with("(", ")"))
}
TypeKind::FnSig { args, rety } => {
write!(f, "fn {} -> {}", self.with(*args), self.with(*rety))
}
TypeKind::Empty => write!(f, "()"),
TypeKind::Never => write!(f, "!"),
TypeKind::Module => match def.name() {
Some(name) => write!(f, "mod {name}"),
None => write!(f, "mod"),
},
},
DefKind::Value(kind) => match kind {
ValueKind::Const(id) => write!(f, "const {}", self.with(*id)),
ValueKind::Static(id) => write!(f, "static {}", self.with(*id)),
ValueKind::Local(id) => write!(f, "local {}", self.with(*id)),
ValueKind::Fn(id) => write!(f, "{}", self.with(*id)),
},
}
}
}
/// Formats an ADT: a continuation of [Handle::fmt]
fn display_adt(handle: &Handle, adt: &Adt, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match adt {
Adt::Enum(variants) => {
let mut variants = variants.iter();
separate(",", || {
variants.next().map(|(name, def)| {
move |f: &mut Delimit<_>| match def {
Some(def) => write!(f, "\n{name}: {}", handle.with(*def)),
None => write!(f, "\n{name}"),
}
})
})(f.delimit_with("enum {", "\n}"))
}
Adt::CLikeEnum(variants) => {
let mut variants = variants.iter();
separate(",", || {
let (name, descrim) = variants.next()?;
Some(move |f: &mut Delimit<_>| write!(f, "\n{name} = {descrim}"))
})(f.delimit_with("enum {", "\n}"))
}
Adt::FieldlessEnum => write!(f, "enum"),
Adt::Struct(members) => {
let mut members = members.iter();
separate(",", || {
let (name, vis, id) = members.next()?;
Some(move |f: &mut Delimit<_>| write!(f, "\n{vis}{name}: {}", handle.with(*id)))
})(f.delimit_with("struct {", "\n}"))
}
Adt::TupleStruct(members) => {
let mut members = members.iter();
separate(", ", || {
let (vis, def) = members.next()?;
Some(move |f: &mut Delimit<_>| write!(f, "{vis}{}", handle.with(*def)))
})(f.delimit_with("struct (", ")"))
}
Adt::UnitStruct => write!(f, "struct;"),
Adt::Union(variants) => {
let mut variants = variants.iter();
separate(",", || {
let (name, def) = variants.next()?;
Some(move |f: &mut Delimit<_>| write!(f, "\n{name}: {}", handle.with(*def)))
})(f.delimit_with("union {", "\n}"))
}
}
} }
} }

View File

@@ -4,154 +4,71 @@
//! //!
//! This crate is a major work-in-progress. //! This crate is a major work-in-progress.
//! //!
//! # The [Project](project::Project)™ //! # The [Table](table::Table)™
//! Contains [item definitions](definition) and type expression information. //! A directed graph of nodes and their dependencies.
//! //!
//! *Every* definition is itself a module, and can contain arbitrarily nested items //! Contains [item definitions](handle) and [type expression](type_expression) information.
//! as part of the [Module](module::Module) tree.
//! //!
//! The Project keeps track of a *global intern pool* of definitions, which are //! *Every* item is itself a module, and can contain arbitrarily nested items
//! trivially comparable by [DefID](key::DefID). Note that, for item definitions, //! as part of the item graph
//! identical types in different modules DO NOT COMPARE EQUAL under this constraint. //!
//! However, so-called "anonymous" types *do not* follow this rule, as their //! The table, additionally, has some queues for use in external algorithms,
//! definitions are constructed dynamically and ensured to be unique. //! detailed in the [stage] module.
// Note: it's a class invariant that named types are not added
// to the anon-types list. Please keep it that way. ♥ Thanks!
//! //!
//! # Namespaces //! # Namespaces
//! Within a Project, [definitions](definition::Def) are classified into two namespaces: //! Each item in the graph is given its own namespace, which is further separated into
//! //! two distinct parts:
//! ## Type Namespace: //! - Children of an item are direct descendents (i.e. their `parent` is a handle to the item)
//! - Modules //! - Imports of an item are indirect descendents created by `use` or `impl` directives. They are
//! - Structs //! shadowed by Children with the same name.
//! - Enums
//! - Type aliases
//!
//! ## Value Namespace:
//! - Functions
//! - Constants
//! - Static variables
//!
//! There is a *key* distinction between the two namespaces when it comes to
//! [Path](path::Path) traversal: Only items in the Type Namespace will be considered
//! as an intermediate path target. This means items in the Value namespace are
//! entirely *opaque*, and form a one-way barrier. Items outside a Value can be
//! referred to within the Value, but items inside a Value *cannot* be referred to
//! outside the Value.
//! //!
//! # Order of operations: //! # Order of operations:
//! Currently, the process of type resolution goes as follows: //! For order-of-operations information, see the [stage] module.
//!
//! 1. Traverse the AST, [collecting all Items into item definitions](name_collector)
//! 2. Eagerly [resolve `use` imports](use_importer)
//! 3. Traverse all [definitions](definition::Def), and [resolve the types for every
//! item](type_resolver)
//! 4. TODO: Construct a typed AST for expressions, and type-check them
#![warn(clippy::all)] #![warn(clippy::all)]
/*
How do I flesh out modules in an incremental way?
1. Visit all *modules* and create nodes in a module tree for them
- This can be done by holding mutable references to submodules!
Module:
values: Map(name -> Value),
types: Map(name -> Type),
Value: Either
function: { signature: Type, body: FunctionBody }
static: { Mutability, ty: Type, init: ConstEvaluationResult }
const: { ty: Type, init: ConstEvaluationResult }
*/
pub mod handle;
pub mod node;
pub mod definition;
pub mod module;
pub mod path;
pub mod project;
pub mod name_collector;
pub mod use_importer;
pub mod type_resolver;
pub mod inference;
pub(crate) mod format_utils; pub(crate) mod format_utils;
/* pub mod table;
LET THERE BE NOTES: pub mod handle;
/// What is an inference rule? pub mod entry;
/// An inference rule is a specification with a set of predicates and a judgement
/// Let's give every type an ID pub mod source;
struct TypeID(usize);
/// Let's give every type some data: pub mod type_kind;
struct TypeDef<'def> { pub mod type_expression;
name: String,
definition: &'def Item, pub mod stage {
//! Type collection, evaluation, checking, and inference passes.
//!
//! # Order of operations
//! 1. [mod@populate]: Populate the graph with nodes for every named item.
//! 2. [mod@import]: Import the `use` nodes discovered in [Stage 1](populate).
//! 3. [mod@categorize]: Categorize the nodes according to textual type information.
//! - Creates anonymous types (`fn(T) -> U`, `&T`, `[T]`, etc.) as necessary to fill in the
//! type graph
//! - Creates a new struct type for every enum struct-variant.
//! 4. [mod@implement]: Import members of implementation modules into types.
pub use populate::Populator;
/// Stage 1: Populate the graph with nodes.
pub mod populate;
pub use import::import;
/// Stage 2: Import the `use` nodes discovered in Stage 1.
pub mod import;
pub use categorize::categorize;
/// Stage 3: Categorize the nodes according to textual type information.
pub mod categorize;
pub use implement::implement;
/// Stage 4: Import members of `impl` blocks into their corresponding types.
pub mod implement;
// TODO: Make type inference stage 5
// TODO: Use the type information stored in the [table]
pub mod infer;
} }
and store them in a big vector of type descriptions:
struct TypeMap<'def> {
types: Vec<TypeDef<'def>>,
}
// todo: insertion of a type should yield a TypeID
// todo: impl index with TypeID
Let's store type information as either a concrete type or a generic type:
/// The Type struct represents all valid types, and can be trivially equality-compared
pub struct Type {
/// You can only have a pointer chain 65535 pointers long.
ref_depth: u16,
kind: TKind,
}
pub enum TKind {
Concrete(TypeID),
Generic(usize),
}
And assume I can specify a rule based on its inputs and outputs:
Rule {
operation: If,
/// The inputs field is populated by
inputs: [Concrete(BOOL), Generic(0), Generic(0)],
outputs: Generic(0),
/// This rule is compiler-intrinsic!
through: None,
}
Rule {
operation: Add,
inputs: [Concrete(I32), Concrete(I32)],
outputs: Concrete(I32),
/// This rule is not compiler-intrinsic (it is overloaded!)
through: Some(&ImplAddForI32::Add),
}
These rules can be stored in some kind of rule database:
let rules: Hashmap<Operation, Vec<Rule>> {
}
*/

View File

@@ -1,71 +0,0 @@
//! A [Module] is a node in the Module Tree (a component of a
//! [Project](crate::project::Project))
use cl_ast::Sym;
use cl_structures::index_map::MapIndex;
use crate::handle::DefID;
use std::collections::HashMap;
/// A [Module] is a node in the Module Tree (a component of a
/// [Project](crate::project::Project)).
#[derive(Clone, Debug, Default, PartialEq, Eq)]
pub struct Module {
pub parent: Option<DefID>,
pub types: HashMap<Sym, DefID>,
pub values: HashMap<Sym, DefID>,
pub imports: Vec<DefID>,
}
impl Module {
pub fn new(parent: DefID) -> Self {
Self { parent: Some(parent), ..Default::default() }
}
pub fn with_optional_parent(parent: Option<DefID>) -> Self {
Self { parent, ..Default::default() }
}
pub fn get(&self, name: Sym) -> (Option<DefID>, Option<DefID>) {
(self.get_type(name), self.get_value(name))
}
pub fn get_type(&self, name: Sym) -> Option<DefID> {
self.types.get(&name).copied()
}
pub fn get_value(&self, name: Sym) -> Option<DefID> {
self.values.get(&name).copied()
}
/// Inserts a type with the provided [name](str) and [id](DefID)
pub fn insert_type(&mut self, name: Sym, id: DefID) -> Option<DefID> {
self.types.insert(name, id)
}
/// Inserts a value with the provided [name](str) and [id](DefID)
pub fn insert_value(&mut self, name: Sym, id: DefID) -> Option<DefID> {
self.values.insert(name, id)
}
}
impl std::fmt::Display for Module {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
let Self { parent, types, values, imports } = self;
if let Some(parent) = parent {
writeln!(f, "Parent: {}", parent.get())?;
}
for (name, table) in [("Types", types), ("Values", values)] {
if table.is_empty() {
continue;
}
writeln!(f, "{name}:")?;
for (name, id) in table.iter() {
writeln!(f, " {name} => {id}")?;
}
}
if !imports.is_empty() {
write!(f, "Imports:")?;
for id in imports {
write!(f, "{id},")?;
}
}
Ok(())
}
}

View File

@@ -1,218 +0,0 @@
//! Performs step 1 of type checking: Collecting all the names of things into [Module] units
use crate::{
definition::{Def, DefKind},
handle::DefID,
module::Module as Mod,
node::{Node, NodeSource},
project::Project as Prj,
};
use cl_ast::{ast_visitor::Visit, *};
use std::mem;
#[derive(Debug)]
pub struct NameCollector<'prj, 'a> {
path: cl_ast::Path,
prj: &'prj mut Prj<'a>,
parent: DefID,
retval: Option<DefID>,
}
impl<'prj, 'a> NameCollector<'prj, 'a> {
/// Constructs a new [NameCollector] out of a [Project](Prj)
pub fn new(prj: &'prj mut Prj<'a>) -> Self {
Self { parent: prj.root, prj, path: Default::default(), retval: None }
}
/// Constructs a new [NameCollector] out of a [Project](Prj) and a parent [DefID]
pub fn with_root(prj: &'prj mut Prj<'a>, parent: DefID) -> Self {
Self { prj, parent, path: Default::default(), retval: None }
}
/// Runs the provided function with the given parent
pub fn with_parent<F, N>(&mut self, parent: DefID, node: N, f: F)
where F: FnOnce(&mut Self, N) {
let parent = mem::replace(&mut self.parent, parent);
f(self, node);
self.parent = parent;
}
/// Extracts the return value from the provided function
pub fn returns<F, N>(&mut self, node: N, f: F) -> Option<DefID>
where F: FnOnce(&mut Self, N) {
let out = self.retval.take();
f(self, node);
mem::replace(&mut self.retval, out)
}
}
impl<'prj, 'a> Visit<'a> for NameCollector<'prj, 'a> {
fn visit_item(&mut self, i: &'a Item) {
let Item { extents: _, attrs, vis, kind } = i;
if let Some(def) = self.returns(kind, Self::visit_item_kind) {
self.prj[def].set_meta(&attrs.meta).set_vis(*vis);
}
}
fn visit_module(&mut self, m: &'a Module) {
let Self { prj, parent, path, retval: _ } = self;
let Module { name, kind } = m;
let def = Def {
module: Mod::new(*parent),
kind: DefKind::Undecided,
node: Node::new(path.clone(), Some(NodeSource::Module(m))),
};
let id = prj.pool.insert(def);
prj[*parent].module.insert_type(*name, id);
self.path.push(PathPart::Ident(*name));
self.with_parent(id, kind, Self::visit_module_kind);
self.path.pop();
self.retval = Some(id);
}
fn visit_alias(&mut self, a: &'a Alias) {
let Self { prj, parent, path, retval: _ } = self;
let Alias { to: name, from: _ } = a;
let def = Def {
module: Mod::new(*parent),
kind: DefKind::Undecided,
node: Node::new(path.clone(), Some(NodeSource::Alias(a))),
};
let id = prj.pool.insert(def);
prj[*parent].module.insert_type(*name, id);
self.retval = Some(id);
}
fn visit_enum(&mut self, e: &'a Enum) {
let Self { prj, parent, path, retval: _ } = self;
let Enum { name, kind } = e;
let def = Def {
module: Mod::new(*parent),
kind: DefKind::Undecided,
node: Node::new(path.clone(), Some(NodeSource::Enum(e))),
};
let id = prj.pool.insert(def);
prj[*parent].module.insert_type(*name, id);
self.with_parent(id, kind, Self::visit_enum_kind);
self.retval = Some(id);
}
fn visit_variant(&mut self, v: &'a Variant) {
let Self { path, prj, parent, retval: _ } = self;
let Variant { name, kind } = v;
let def = Def {
module: Mod::new(*parent),
kind: DefKind::Undecided,
node: Node::new(path.clone(), Some(NodeSource::Variant(v))),
};
let id = prj.pool.insert(def);
prj[*parent].module.insert_type(*name, id);
self.with_parent(id, kind, Self::visit_variant_kind);
self.retval = Some(id);
}
fn visit_struct(&mut self, s: &'a Struct) {
let Self { prj, parent, path, retval: _ } = self;
let Struct { name, kind } = s;
let def = Def {
module: Mod::new(*parent),
kind: DefKind::Undecided,
node: Node::new(path.clone(), Some(NodeSource::Struct(s))),
};
let id = prj.pool.insert(def);
prj[*parent].module.insert_type(*name, id);
self.with_parent(id, kind, Self::visit_struct_kind);
self.retval = Some(id);
}
fn visit_const(&mut self, c: &'a Const) {
let Self { prj, parent, path, retval: _ } = self;
let Const { name, ty: _, init } = c;
let def = Def {
module: Mod::new(*parent),
kind: DefKind::Undecided,
node: Node::new(path.clone(), Some(NodeSource::Const(c))),
};
let id = prj.pool.insert(def);
prj[*parent].module.insert_value(*name, id);
self.with_parent(id, &**init, Self::visit_expr);
self.retval = Some(id);
}
fn visit_static(&mut self, s: &'a Static) {
let Self { prj, parent, path, retval: _ } = self;
let Static { name, mutable: _, ty: _, init } = s;
let def = Def {
module: Mod::new(*parent),
kind: DefKind::Undecided,
node: Node::new(path.clone(), Some(NodeSource::Static(s))),
};
let id = prj.pool.insert(def);
prj[*parent].module.insert_value(*name, id);
self.with_parent(id, &**init, Self::visit_expr);
self.retval = Some(id);
}
fn visit_function(&mut self, f: &'a Function) {
let Self { prj, parent, path, retval: _ } = self;
let Function { name, body, .. } = f;
let def = Def {
module: Mod::new(*parent),
kind: DefKind::Undecided,
node: Node::new(path.clone(), Some(NodeSource::Function(f))),
};
let id = prj.pool.insert(def);
prj[*parent].module.insert_value(*name, id);
if let Some(body) = body {
self.with_parent(id, body, Self::visit_block);
}
self.retval = Some(id);
}
fn visit_impl(&mut self, i: &'a Impl) {
let Self { prj, parent, path, retval: _ } = self;
let Impl { target: _, body } = i;
let def = Def {
module: Mod::new(*parent),
kind: DefKind::Undecided,
node: Node::new(path.clone(), Some(NodeSource::Impl(i))),
};
let id = prj.pool.insert(def);
// items will get reparented after name collection, when target is available
self.with_parent(id, body, Self::visit_file);
self.retval = Some(id);
}
fn visit_use(&mut self, u: &'a Use) {
let Self { prj, parent, path, retval } = self;
let def = Def {
module: Mod::new(*parent),
kind: DefKind::Use(*parent),
node: Node::new(path.clone(), Some(NodeSource::Use(u))),
};
let id = prj.pool.insert(def);
prj[*parent].module.imports.push(id);
*retval = Some(id);
}
fn visit_let(&mut self, l: &'a Let) {
let Self { prj, parent, path, retval: _ } = self;
let Let { name, init, .. } = l;
let def = Def {
module: Mod::new(*parent),
kind: DefKind::Undecided,
node: Node::new(path.clone(), Some(NodeSource::Local(l))),
};
let id = prj.pool.insert(def);
prj[*parent].module.insert_value(*name, id);
if let Some(expr) = init {
self.visit_expr(expr)
}
self.retval = Some(id)
}
}

View File

@@ -1,214 +0,0 @@
//! A [Node] contains the [NodeSource] and [Item] metadata for any
//! [Def](crate::definition::Def), as well as the [Path] of the
//! containing [Module].
//!
//! [Node]s are collected by the [Node Sorcerer](sorcerer),
//! an AST visitor that pairs [NodeSource]s with their surrounding
//! context ([Path], [struct@Span], [Meta], [Visibility])
use cl_ast::ast::*;
use cl_structures::span::Span;
use std::fmt;
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct Node<'a> {
pub in_path: Path,
pub span: &'a Span,
pub meta: &'a [Meta],
pub vis: Visibility,
pub kind: Option<NodeSource<'a>>,
}
impl<'a> Node<'a> {
pub fn new(path: Path, kind: Option<NodeSource<'a>>) -> Self {
const DUMMY_SPAN: Span = Span::dummy();
Self { in_path: path, span: &DUMMY_SPAN, meta: &[], vis: Visibility::Public, kind }
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum NodeSource<'a> {
Root,
Module(&'a Module),
Alias(&'a Alias),
Enum(&'a Enum),
Variant(&'a Variant),
Struct(&'a Struct),
Const(&'a Const),
Static(&'a Static),
Function(&'a Function),
Local(&'a Let),
Impl(&'a Impl),
Use(&'a Use),
Ty(&'a TyKind),
}
impl<'a> NodeSource<'a> {
pub fn name(&self) -> Option<Sym> {
match self {
NodeSource::Root => None,
NodeSource::Module(v) => Some(v.name),
NodeSource::Alias(v) => Some(v.to),
NodeSource::Enum(v) => Some(v.name),
NodeSource::Variant(v) => Some(v.name),
NodeSource::Struct(v) => Some(v.name),
NodeSource::Const(v) => Some(v.name),
NodeSource::Static(v) => Some(v.name),
NodeSource::Function(v) => Some(v.name),
NodeSource::Local(l) => Some(l.name),
NodeSource::Impl(_) | NodeSource::Use(_) | NodeSource::Ty(_) => None,
}
}
/// Returns `true` if this [NodeSource] defines a named value
pub fn is_named_value(&self) -> bool {
matches!(self, Self::Const(_) | Self::Static(_) | Self::Function(_))
}
/// Returns `true` if this [NodeSource] defines a named type
pub fn is_named_type(&self) -> bool {
matches!(
self,
Self::Module(_) | Self::Alias(_) | Self::Enum(_) | Self::Struct(_)
)
}
/// Returns `true` if this [NodeSource] refers to a [Ty] with no name
pub fn is_anon_type(&self) -> bool {
matches!(self, Self::Ty(_))
}
/// Returns `true` if this [NodeSource] refers to an [Impl] block
pub fn is_impl(&self) -> bool {
matches!(self, Self::Impl(_))
}
/// Returns `true` if this [NodeSource] refers to a [Use] import
pub fn is_use_import(&self) -> bool {
matches!(self, Self::Use(_))
}
}
impl fmt::Display for NodeSource<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Root => "🌳 root 🌳".fmt(f),
Self::Module(arg0) => arg0.fmt(f),
Self::Alias(arg0) => arg0.fmt(f),
Self::Enum(arg0) => arg0.fmt(f),
Self::Variant(arg0) => arg0.fmt(f),
Self::Struct(arg0) => arg0.fmt(f),
Self::Const(arg0) => arg0.fmt(f),
Self::Static(arg0) => arg0.fmt(f),
Self::Function(arg0) => arg0.fmt(f),
Self::Impl(arg0) => arg0.fmt(f),
Self::Use(arg0) => arg0.fmt(f),
Self::Ty(arg0) => arg0.fmt(f),
Self::Local(arg0) => arg0.fmt(f),
}
}
}
pub mod sorcerer {
//! An [AST](cl_ast) analysis pass that collects [Node] entries.
use super::{Node, NodeSource};
use cl_ast::{ast::*, ast_visitor::visit::*};
use cl_structures::span::Span;
use std::mem;
/// An AST analysis pass that collects [Node]s
#[derive(Clone, Debug)]
pub struct NodeSorcerer<'a> {
path: Path,
parts: Parts<'a>,
defs: Vec<Node<'a>>,
}
type Parts<'a> = (&'a Span, &'a [Meta], Visibility);
impl<'a> NodeSorcerer<'a> {
pub fn into_defs(self) -> Vec<Node<'a>> {
self.defs
}
fn with_parts<F>(&mut self, s: &'a Span, a: &'a [Meta], v: Visibility, f: F)
where F: FnOnce(&mut Self) {
let parts = mem::replace(&mut self.parts, (s, a, v));
f(self);
self.parts = parts;
}
fn with_only_span<F>(&mut self, span: &'a Span, f: F)
where F: FnOnce(&mut Self) {
self.with_parts(span, &[], Visibility::Public, f)
}
fn push(&mut self, kind: NodeSource<'a>) {
let Self { path, parts, defs } = self;
let (span, meta, vis) = *parts;
defs.push(Node { in_path: path.clone(), span, meta, vis, kind: Some(kind) })
}
}
impl Default for NodeSorcerer<'_> {
fn default() -> Self {
const DPARTS: Parts = (&Span::dummy(), &[], Visibility::Private);
Self {
path: Path { absolute: true, ..Default::default() },
parts: DPARTS,
defs: Default::default(),
}
}
}
impl<'a> Visit<'a> for NodeSorcerer<'a> {
fn visit_module(&mut self, m: &'a Module) {
let Module { name, kind } = m;
self.path.push(PathPart::Ident(*name));
self.visit_module_kind(kind);
self.path.pop();
}
fn visit_item(&mut self, i: &'a Item) {
let Item { extents, attrs, vis, kind } = i;
self.with_parts(extents, &attrs.meta, *vis, |v| {
v.visit_item_kind(kind);
});
}
fn visit_ty(&mut self, t: &'a Ty) {
let Ty { extents, kind } = t;
self.with_only_span(extents, |v| {
v.push(NodeSource::Ty(kind));
v.visit_ty_kind(kind);
});
}
fn visit_stmt(&mut self, s: &'a Stmt) {
let Stmt { extents, kind, semi } = s;
self.with_only_span(extents, |d| {
d.visit_stmt_kind(kind);
d.visit_semi(semi);
})
}
fn visit_item_kind(&mut self, kind: &'a ItemKind) {
match kind {
ItemKind::Module(i) => self.push(NodeSource::Module(i)),
ItemKind::Alias(i) => self.push(NodeSource::Alias(i)),
ItemKind::Enum(i) => self.push(NodeSource::Enum(i)),
ItemKind::Struct(i) => self.push(NodeSource::Struct(i)),
ItemKind::Const(i) => self.push(NodeSource::Const(i)),
ItemKind::Static(i) => self.push(NodeSource::Static(i)),
ItemKind::Function(i) => self.push(NodeSource::Function(i)),
ItemKind::Impl(i) => self.push(NodeSource::Impl(i)),
ItemKind::Use(i) => self.push(NodeSource::Use(i)),
}
or_visit_item_kind(self, kind);
}
fn visit_stmt_kind(&mut self, kind: &'a StmtKind) {
if let StmtKind::Local(l) = kind {
self.push(NodeSource::Local(l))
}
or_visit_stmt_kind(self, kind);
}
}
}

View File

@@ -1,60 +0,0 @@
//! A [Path] is a borrowed view of an [AST Path](AstPath)
use cl_ast::{Path as AstPath, PathPart};
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct Path<'p> {
pub absolute: bool,
pub parts: &'p [PathPart],
}
impl<'p> Path<'p> {
pub fn new(path: &'p AstPath) -> Self {
let AstPath { absolute, parts } = path;
Self { absolute: *absolute, parts }
}
pub fn relative(self) -> Self {
Self { absolute: false, ..self }
}
pub fn pop_front(self) -> Option<Self> {
let Self { absolute, parts } = self;
Some(Self { absolute, parts: parts.get(1..)? })
}
pub fn front(self) -> Option<Self> {
let Self { absolute, parts } = self;
Some(Self { absolute, parts: parts.get(..1)? })
}
pub fn is_empty(&self) -> bool {
self.parts.is_empty()
}
pub fn len(&self) -> usize {
self.parts.len()
}
pub fn first(&self) -> Option<&PathPart> {
self.parts.first()
}
}
impl<'p> From<&'p AstPath> for Path<'p> {
fn from(value: &'p AstPath) -> Self {
Self::new(value)
}
}
impl AsRef<[PathPart]> for Path<'_> {
fn as_ref(&self) -> &[PathPart] {
self.parts
}
}
impl std::fmt::Display for Path<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
const SEPARATOR: &str = "::";
let Self { absolute, parts } = self;
if *absolute {
write!(f, "{SEPARATOR}")?
}
for (idx, part) in parts.iter().enumerate() {
write!(f, "{}{part}", if idx > 0 { SEPARATOR } else { "" })?;
}
Ok(())
}
}

View File

@@ -1,376 +0,0 @@
//! A [Project] contains a tree of [Def]initions, referred to by their [Path]
use crate::{
definition::{Def, DefKind, TypeKind},
handle::DefID,
module,
node::{Node, NodeSource},
path::Path,
};
use cl_ast::PathPart;
use cl_structures::index_map::IndexMap;
use std::{
collections::HashMap,
ops::{Index, IndexMut},
};
use self::evaluate::EvaluableTypeExpression;
#[derive(Clone, Debug)]
pub struct Project<'a> {
pub pool: IndexMap<DefID, Def<'a>>,
/// Stores anonymous tuples, function pointer types, etc.
pub anon_types: HashMap<TypeKind, DefID>,
pub root: DefID,
}
impl Project<'_> {
pub fn new() -> Self {
Self::default()
}
}
impl Default for Project<'_> {
fn default() -> Self {
const ROOT_PATH: cl_ast::Path = cl_ast::Path { absolute: true, parts: Vec::new() };
let mut pool = IndexMap::default();
let root = pool.insert(Def {
module: Default::default(),
kind: DefKind::Type(TypeKind::Module),
node: Node::new(ROOT_PATH, Some(NodeSource::Root)),
});
let never = pool.insert(Def {
module: module::Module::new(root),
kind: DefKind::Type(TypeKind::Never),
node: Node::new(ROOT_PATH, None),
});
let empty = pool.insert(Def {
module: module::Module::new(root),
kind: DefKind::Type(TypeKind::Empty),
node: Node::new(ROOT_PATH, None),
});
let mut anon_types = HashMap::new();
anon_types.insert(TypeKind::Empty, empty);
anon_types.insert(TypeKind::Never, never);
Self { pool, root, anon_types }
}
}
impl<'a> Project<'a> {
pub fn parent_of(&self, module: DefID) -> Option<DefID> {
self[module].module.parent
}
pub fn root_of(&self, module: DefID) -> DefID {
match self.parent_of(module) {
Some(module) => self.root_of(module),
None => module,
}
}
/// Returns the DefID of the Self type within the given DefID's context
pub fn selfty_of(&self, node: DefID) -> Option<DefID> {
match self[node].kind {
DefKind::Impl(id) => Some(id),
DefKind::Type(_) => Some(node),
_ => self.selfty_of(self.parent_of(node)?),
}
}
pub fn get<'p>(
&self,
path: Path<'p>,
within: DefID,
) -> Option<(Option<DefID>, Option<DefID>, Path<'p>)> {
if path.absolute {
return self.get(path.relative(), self.root_of(within));
}
match path.as_ref() {
[PathPart::SuperKw, ..] => self.get(path.pop_front()?, self.parent_of(within)?),
[PathPart::SelfTy, ..] => self.get(path.pop_front()?, self.selfty_of(within)?),
[PathPart::SelfKw, ..] => self.get(path.pop_front()?, within),
[PathPart::Ident(name)] => {
let (ty, val) = self[within].module.get(*name);
// Transparent nodes can be looked through in reverse
if self[within].is_transparent() {
let lookback = self.parent_of(within).and_then(|p| self.get(path, p));
if let Some((subty, subval, path)) = lookback {
return Some((ty.or(subty), val.or(subval), path));
}
}
Some((ty, val, path.pop_front()?))
}
[PathPart::Ident(name), ..] => {
// TODO: This is currently too permissive, and treats undecided nodes as if they're
// always transparent, among other issues.
let (tysub, _, _) = match self[within].is_transparent() {
true => self.get(path.front()?, within)?,
false => (None, None, path),
};
let ty = self[within].module.get_type(*name).or(tysub)?;
self.get(path.pop_front()?, ty)
}
[] => Some((Some(within), None, path)),
}
}
/// Resolves a path within a module tree, finding the innermost module.
/// Returns the remaining path parts.
pub fn get_type<'p>(&self, path: Path<'p>, within: DefID) -> Option<(DefID, Path<'p>)> {
if path.absolute {
self.get_type(path.relative(), self.root_of(within))
} else if let Some(front) = path.first() {
let module = &self[within].module;
match front {
PathPart::SelfKw => self.get_type(path.pop_front()?, within),
PathPart::SuperKw => self.get_type(path.pop_front()?, module.parent?),
PathPart::SelfTy => self.get_type(path.pop_front()?, self.selfty_of(within)?),
PathPart::Ident(name) => match module.types.get(name) {
Some(&submodule) => self.get_type(path.pop_front()?, submodule),
None => Some((within, path)),
},
}
} else {
Some((within, path))
}
}
/// Inserts the type returned by the provided closure iff the TypeKind doesn't already exist
///
/// Assumes `kind` uniquely identifies the type!
pub fn insert_anonymous_type(
&mut self,
kind: TypeKind,
def: impl FnOnce() -> Def<'a>,
) -> DefID {
*(self
.anon_types
.entry(kind)
.or_insert_with(|| self.pool.insert(def())))
}
pub fn evaluate<T>(&mut self, expr: &T, parent: DefID) -> Result<T::Out, String>
where T: EvaluableTypeExpression {
expr.evaluate(self, parent)
}
}
impl<'a> Index<DefID> for Project<'a> {
type Output = Def<'a>;
fn index(&self, index: DefID) -> &Self::Output {
&self.pool[index]
}
}
impl IndexMut<DefID> for Project<'_> {
fn index_mut(&mut self, index: DefID) -> &mut Self::Output {
&mut self.pool[index]
}
}
pub mod evaluate {
//! An [EvaluableTypeExpression] is a component of a type expression tree
//! or an intermediate result of expression evaluation.
use super::*;
use crate::module;
use cl_ast::{Sym, Ty, TyArray, TyFn, TyKind, TyRef, TySlice, TyTuple};
/// Things that can be evaluated as a type expression
pub trait EvaluableTypeExpression {
/// The result of type expression evaluation
type Out;
fn evaluate(&self, prj: &mut Project, parent: DefID) -> Result<Self::Out, String>;
}
impl EvaluableTypeExpression for Ty {
type Out = DefID;
fn evaluate(&self, prj: &mut Project, id: DefID) -> Result<DefID, String> {
self.kind.evaluate(prj, id)
}
}
impl EvaluableTypeExpression for TyKind {
type Out = DefID;
fn evaluate(&self, prj: &mut Project, parent: DefID) -> Result<DefID, String> {
let id = match self {
// TODO: reduce duplication here
TyKind::Never => prj.anon_types[&TypeKind::Never],
TyKind::Empty => prj.anon_types[&TypeKind::Empty],
// TyKind::Path must be looked up explicitly
TyKind::Path(path) => path.evaluate(prj, parent)?,
TyKind::Slice(slice) => slice.evaluate(prj, parent)?,
TyKind::Array(array) => array.evaluate(prj, parent)?,
TyKind::Tuple(tup) => tup.evaluate(prj, parent)?,
TyKind::Ref(tyref) => tyref.evaluate(prj, parent)?,
TyKind::Fn(tyfn) => tyfn.evaluate(prj, parent)?,
};
// println!("{self} => {id:?}");
Ok(id)
}
}
impl EvaluableTypeExpression for Sym {
type Out = DefID;
fn evaluate(&self, prj: &mut Project, parent: DefID) -> Result<Self::Out, String> {
prj[parent]
.module
.types
.get(self)
.copied()
.ok_or_else(|| format!("{self} is not a member of {:?}", prj[parent].name()))
}
}
impl EvaluableTypeExpression for TySlice {
type Out = DefID;
fn evaluate(&self, prj: &mut Project, parent: DefID) -> Result<Self::Out, String> {
let ty = self.ty.evaluate(prj, parent)?;
let root = prj.root;
let id = prj.insert_anonymous_type(TypeKind::Slice(ty), move || Def {
module: module::Module::new(root),
node: Node::new(Default::default(), None),
kind: DefKind::Type(TypeKind::Slice(ty)),
});
Ok(id)
}
}
impl EvaluableTypeExpression for TyArray {
type Out = DefID;
fn evaluate(&self, prj: &mut Project, parent: DefID) -> Result<Self::Out, String> {
let kind = TypeKind::Array(self.ty.evaluate(prj, parent)?, self.count);
let root = prj.root;
let id = prj.insert_anonymous_type(kind.clone(), move || Def {
module: module::Module::new(root),
node: Node::new(Default::default(), None),
kind: DefKind::Type(kind),
});
Ok(id)
}
}
impl EvaluableTypeExpression for TyTuple {
type Out = DefID;
fn evaluate(&self, prj: &mut Project, parent: DefID) -> Result<DefID, String> {
let types = self.types.evaluate(prj, parent)?;
let root = prj.root;
let id = prj.insert_anonymous_type(TypeKind::Tuple(types.clone()), move || Def {
module: module::Module::new(root),
node: Node::new(Default::default(), None),
kind: DefKind::Type(TypeKind::Tuple(types)),
});
Ok(id)
}
}
impl EvaluableTypeExpression for TyRef {
type Out = DefID;
fn evaluate(&self, prj: &mut Project, parent: DefID) -> Result<DefID, String> {
let TyRef { count, mutable: _, to } = self;
let to = to.evaluate(prj, parent)?;
let root = prj.root;
let id = prj.insert_anonymous_type(TypeKind::Ref(*count, to), move || Def {
module: module::Module::new(root),
node: Node::new(Default::default(), None),
kind: DefKind::Type(TypeKind::Ref(*count, to)),
});
Ok(id)
}
}
impl EvaluableTypeExpression for TyFn {
type Out = DefID;
fn evaluate(&self, prj: &mut Project, parent: DefID) -> Result<DefID, String> {
let TyFn { args, rety } = self;
let args = args.evaluate(prj, parent)?;
let rety = match rety {
Some(rety) => rety.evaluate(prj, parent)?,
_ => TyKind::Empty.evaluate(prj, parent)?,
};
let root = prj.root;
let id = prj.insert_anonymous_type(TypeKind::FnSig { args, rety }, || Def {
module: module::Module::new(root),
node: Node::new(Default::default(), None),
kind: DefKind::Type(TypeKind::FnSig { args, rety }),
});
Ok(id)
}
}
impl EvaluableTypeExpression for cl_ast::Path {
type Out = DefID;
fn evaluate(&self, prj: &mut Project, parent: DefID) -> Result<Self::Out, String> {
Path::from(self).evaluate(prj, parent)
}
}
impl EvaluableTypeExpression for PathPart {
type Out = DefID;
fn evaluate(&self, prj: &mut Project, parent: DefID) -> Result<Self::Out, String> {
match self {
PathPart::SuperKw => prj
.parent_of(parent)
.ok_or_else(|| "Attempt to get super of root".into()),
PathPart::SelfKw => Ok(parent),
PathPart::SelfTy => prj
.selfty_of(parent)
.ok_or_else(|| "Attempt to get Self outside a Self-able context".into()),
PathPart::Ident(name) => name.evaluate(prj, parent),
}
}
}
impl<'a> EvaluableTypeExpression for Path<'a> {
type Out = DefID;
fn evaluate(&self, prj: &mut Project, parent: DefID) -> Result<Self::Out, String> {
let (tid, vid, path) = prj.get(*self, parent).ok_or("Failed to traverse path")?;
if !path.is_empty() {
Err(format!("Could not traverse past boundary: {path}"))?;
}
match (tid, vid) {
(Some(ty), _) => Ok(ty),
(None, Some(val)) => Ok(val),
(None, None) => Err(format!("No type or value found at path {self}")),
}
}
}
impl<T: EvaluableTypeExpression> EvaluableTypeExpression for [T] {
type Out = Vec<T::Out>;
fn evaluate(&self, prj: &mut Project, parent: DefID) -> Result<Self::Out, String> {
let mut types = vec![];
for value in self {
types.push(value.evaluate(prj, parent)?)
}
Ok(types)
}
}
impl<T: EvaluableTypeExpression> EvaluableTypeExpression for Option<T> {
type Out = Option<T::Out>;
fn evaluate(&self, prj: &mut Project, parent: DefID) -> Result<Self::Out, String> {
Ok(match self {
Some(v) => Some(v.evaluate(prj, parent)?),
None => None,
})
}
}
impl<T: EvaluableTypeExpression> EvaluableTypeExpression for Box<T> {
type Out = T::Out;
fn evaluate(&self, prj: &mut Project, parent: DefID) -> Result<Self::Out, String> {
self.as_ref().evaluate(prj, parent)
}
}
}

View File

@@ -0,0 +1,87 @@
//! Holds the [Source] of a definition in the AST
use cl_ast::ast::*;
use std::fmt;
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum Source<'a> {
Root,
Module(&'a Module),
Alias(&'a Alias),
Enum(&'a Enum),
Variant(&'a Variant),
Struct(&'a Struct),
Const(&'a Const),
Static(&'a Static),
Function(&'a Function),
Local(&'a Let),
Impl(&'a Impl),
Use(&'a Use),
Ty(&'a TyKind),
}
impl<'a> Source<'a> {
pub fn name(&self) -> Option<Sym> {
match self {
Source::Root => None,
Source::Module(v) => Some(v.name),
Source::Alias(v) => Some(v.to),
Source::Enum(v) => Some(v.name),
Source::Variant(v) => Some(v.name),
Source::Struct(v) => Some(v.name),
Source::Const(v) => Some(v.name),
Source::Static(v) => Some(v.name),
Source::Function(v) => Some(v.name),
Source::Local(l) => Some(l.name),
Source::Impl(_) | Source::Use(_) | Source::Ty(_) => None,
}
}
/// Returns `true` if this [Source] defines a named value
pub fn is_named_value(&self) -> bool {
matches!(self, Self::Const(_) | Self::Static(_) | Self::Function(_))
}
/// Returns `true` if this [Source] defines a named type
pub fn is_named_type(&self) -> bool {
matches!(
self,
Self::Module(_) | Self::Alias(_) | Self::Enum(_) | Self::Struct(_)
)
}
/// Returns `true` if this [Source] refers to a [Ty] with no name
pub fn is_anon_type(&self) -> bool {
matches!(self, Self::Ty(_))
}
/// Returns `true` if this [Source] refers to an [Impl] block
pub fn is_impl(&self) -> bool {
matches!(self, Self::Impl(_))
}
/// Returns `true` if this [Source] refers to a [Use] import
pub fn is_use_import(&self) -> bool {
matches!(self, Self::Use(_))
}
}
impl fmt::Display for Source<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Root => "🌳 root 🌳".fmt(f),
Self::Module(arg0) => arg0.fmt(f),
Self::Alias(arg0) => arg0.fmt(f),
Self::Enum(arg0) => arg0.fmt(f),
Self::Variant(arg0) => arg0.fmt(f),
Self::Struct(arg0) => arg0.fmt(f),
Self::Const(arg0) => arg0.fmt(f),
Self::Static(arg0) => arg0.fmt(f),
Self::Function(arg0) => arg0.fmt(f),
Self::Impl(arg0) => arg0.fmt(f),
Self::Use(arg0) => arg0.fmt(f),
Self::Ty(arg0) => arg0.fmt(f),
Self::Local(arg0) => arg0.fmt(f),
}
}
}

View File

@@ -0,0 +1,229 @@
//! Categorizes an entry in a table according to its embedded type information
use crate::{
handle::Handle,
source::Source,
table::{NodeKind, Table},
type_expression::{Error as TypeEval, TypeExpression},
type_kind::{Adt, TypeKind},
};
use cl_ast::*;
/// Ensures a type entry exists for the provided handle in the table
pub fn categorize(table: &mut Table, node: Handle) -> CatResult<()> {
if let Some(meta) = table.meta(node) {
for meta @ Meta { name, kind } in meta {
if let ("intrinsic", MetaKind::Equals(Literal::String(s))) = (&**name, kind) {
let kind =
TypeKind::Intrinsic(s.parse().map_err(|_| Error::BadMeta(meta.clone()))?);
table.set_ty(node, kind);
return Ok(());
}
}
}
let Some(source) = table.source(node) else {
return Ok(());
};
match source {
Source::Root => Ok(()),
Source::Module(_) => Ok(()),
Source::Alias(a) => cat_alias(table, node, a),
Source::Enum(e) => cat_enum(table, node, e),
Source::Variant(_) => Ok(()),
Source::Struct(s) => cat_struct(table, node, s),
Source::Const(c) => cat_const(table, node, c),
Source::Static(s) => cat_static(table, node, s),
Source::Function(f) => cat_function(table, node, f),
Source::Local(l) => cat_local(table, node, l),
Source::Impl(i) => cat_impl(table, node, i),
Source::Use(_) => Ok(()),
Source::Ty(ty) => ty
.evaluate(table, node)
.map_err(|e| Error::TypeEval(e, " while categorizing a type"))
.map(drop),
}
}
fn parent(table: &Table, node: Handle) -> Handle {
table.parent(node).copied().unwrap_or(node)
}
fn cat_alias(table: &mut Table, node: Handle, a: &Alias) -> CatResult<()> {
let parent = parent(table, node);
let kind = match &a.from {
Some(ty) => TypeKind::Instance(
ty.evaluate(table, parent)
.map_err(|e| Error::TypeEval(e, " while categorizing an alias"))?,
),
None => TypeKind::Empty,
};
table.set_ty(node, kind);
Ok(())
}
fn cat_struct(table: &mut Table, node: Handle, s: &Struct) -> CatResult<()> {
let parent = parent(table, node);
let Struct { name: _, kind } = s;
let kind = match kind {
StructKind::Empty => TypeKind::Adt(Adt::UnitStruct),
StructKind::Tuple(types) => {
let mut out = vec![];
for ty in types {
out.push((Visibility::Public, ty.evaluate(table, parent)?))
}
TypeKind::Adt(Adt::TupleStruct(out))
}
StructKind::Struct(members) => {
let mut out = vec![];
for m in members {
out.push(cat_member(table, node, m)?)
}
TypeKind::Adt(Adt::Struct(out))
}
};
table.set_ty(node, kind);
Ok(())
}
fn cat_member(
table: &mut Table,
node: Handle,
m: &StructMember,
) -> CatResult<(Sym, Visibility, Handle)> {
let StructMember { vis, name, ty } = m;
Ok((*name, *vis, ty.evaluate(table, node)?))
}
fn cat_enum<'a>(table: &mut Table<'a>, node: Handle, e: &'a Enum) -> CatResult<()> {
let Enum { name: _, kind } = e;
let kind = match kind {
EnumKind::NoVariants => TypeKind::Adt(Adt::Enum(vec![])),
EnumKind::Variants(variants) => {
let mut out_vars = vec![];
for v in variants {
out_vars.push(cat_variant(table, node, v)?)
}
TypeKind::Adt(Adt::Enum(out_vars))
}
};
table.set_ty(node, kind);
Ok(())
}
fn cat_variant<'a>(
table: &mut Table<'a>,
node: Handle,
v: &'a Variant,
) -> CatResult<(Sym, Option<Handle>)> {
let parent = parent(table, node);
let Variant { name, kind } = v;
match kind {
VariantKind::Plain => Ok((*name, None)),
VariantKind::CLike(c) => todo!("enum-variant constant {c}"),
VariantKind::Tuple(ty) => {
let ty = ty
.evaluate(table, parent)
.map_err(|e| Error::TypeEval(e, " while categorizing a variant"))?;
Ok((*name, Some(ty)))
}
VariantKind::Struct(members) => {
let mut out = vec![];
for m in members {
out.push(cat_member(table, node, m)?)
}
let kind = TypeKind::Adt(Adt::Struct(out));
let mut h = node.to_entry_mut(table);
let mut variant = h.new_entry(NodeKind::Type);
variant.set_source(Source::Variant(v));
variant.set_ty(kind);
Ok((*name, Some(variant.id())))
}
}
}
fn cat_const(table: &mut Table, node: Handle, c: &Const) -> CatResult<()> {
let parent = parent(table, node);
let kind = TypeKind::Instance(
c.ty.evaluate(table, parent)
.map_err(|e| Error::TypeEval(e, " while categorizing a const"))?,
);
table.set_ty(node, kind);
Ok(())
}
fn cat_static(table: &mut Table, node: Handle, s: &Static) -> CatResult<()> {
let parent = parent(table, node);
let kind = TypeKind::Instance(
s.ty.evaluate(table, parent)
.map_err(|e| Error::TypeEval(e, " while categorizing a static"))?,
);
table.set_ty(node, kind);
Ok(())
}
fn cat_function(table: &mut Table, node: Handle, f: &Function) -> CatResult<()> {
let parent = parent(table, node);
let kind = TypeKind::Instance(
f.sign
.evaluate(table, parent)
.map_err(|e| Error::TypeEval(e, " while categorizing a function"))?,
);
table.set_ty(node, kind);
Ok(())
}
fn cat_local(table: &mut Table, node: Handle, l: &Let) -> CatResult<()> {
let parent = parent(table, node);
if let Some(ty) = &l.ty {
let kind = ty
.evaluate(table, parent)
.map_err(|e| Error::TypeEval(e, " while categorizing a let binding"))?;
table.set_ty(node, TypeKind::Instance(kind));
}
Ok(())
}
fn cat_impl(table: &mut Table, node: Handle, i: &Impl) -> CatResult<()> {
let parent = parent(table, node);
let Impl { target, body: _ } = i;
let target = match target {
ImplKind::Type(t) => t.evaluate(table, parent),
ImplKind::Trait { impl_trait: _, for_type: t } => t.evaluate(table, parent),
}?;
table.set_impl_target(node, target);
Ok(())
}
type CatResult<T> = Result<T, Error>;
#[derive(Clone, Debug)]
pub enum Error {
BadMeta(Meta),
Recursive(Handle),
TypeEval(TypeEval, &'static str),
}
impl From<TypeEval> for Error {
fn from(value: TypeEval) -> Self {
Error::TypeEval(value, "")
}
}
impl std::fmt::Display for Error {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Error::BadMeta(meta) => write!(f, "Unknown meta attribute: #[{meta}]"),
Error::Recursive(id) => {
write!(f, "Encountered recursive type without indirection: {id}")
}
Error::TypeEval(e, during) => write!(f, "{e}{during}"),
}
}
}

View File

@@ -0,0 +1,23 @@
use crate::{handle::Handle, table::Table};
pub fn implement(table: &mut Table) -> Vec<Handle> {
let pending = std::mem::take(&mut table.impls);
let mut errors = vec![];
for node in pending {
if let Err(e) = impl_one(table, node) {
errors.push(e);
}
}
errors
}
pub fn impl_one(table: &mut Table, node: Handle) -> Result<(), Handle> {
let Some(target) = table.impl_target(node) else {
Err(node)?
};
let Table { children, imports, .. } = table;
if let Some(children) = children.get(&node) {
imports.entry(target).or_default().extend(children);
}
Ok(())
}

View File

@@ -0,0 +1,158 @@
//! An algorithm for importing external nodes
use crate::{
handle::Handle,
source::Source,
table::{NodeKind, Table},
};
use cl_ast::{PathPart, Sym, Use, UseTree};
use core::slice;
use std::{collections::HashSet, mem};
type Seen = HashSet<Handle>;
pub fn import<'a>(table: &mut Table<'a>) -> Vec<(Handle, Error<'a>)> {
let pending = mem::take(&mut table.uses);
let mut seen = Seen::new();
let mut failed = vec![];
for import in pending {
let Err(e) = import_one(table, import, &mut seen) else {
continue;
};
if let Error::NotFound(_, _) = e {
table.mark_use_item(import)
}
failed.push((import, e));
}
failed
}
fn import_one<'a>(table: &mut Table<'a>, item: Handle, seen: &mut Seen) -> UseResult<'a, ()> {
if !seen.insert(item) {
return Ok(());
}
let Some(NodeKind::Use) = table.kind(item) else {
Err(Error::ItsNoUse)?
};
let Some(&dst) = table.parent(item) else {
Err(Error::NoParents)?
};
let Some(code) = table.source(item) else {
Err(Error::NoSource)?
};
let &Source::Use(tree) = code else {
Err(Error::BadSource(*code))?
};
let Use { absolute, tree } = tree;
import_tree(
table,
if !absolute { dst } else { table.root() },
dst,
tree,
seen,
)
}
fn import_tree<'a>(
table: &mut Table<'a>,
src: Handle,
dst: Handle,
tree: &UseTree,
seen: &mut Seen,
) -> UseResult<'a, ()> {
match tree {
UseTree::Tree(trees) => trees
.iter()
.try_for_each(|tree| import_tree(table, src, dst, tree, seen)),
UseTree::Path(part, rest) => {
let source = table
.nav(src, slice::from_ref(part))
.ok_or_else(|| Error::NotFound(src, part.clone()))?;
import_tree(table, source, dst, rest, seen)
}
UseTree::Alias(src_name, dst_name) => {
import_name(table, src, src_name, dst, dst_name, seen)
}
UseTree::Name(src_name) => import_name(table, src, src_name, dst, src_name, seen),
UseTree::Glob => import_glob(table, src, dst, seen),
}
}
fn import_glob<'a>(
table: &mut Table<'a>,
src: Handle,
dst: Handle,
seen: &mut Seen,
) -> UseResult<'a, ()> {
let Table { children, imports, .. } = table;
if let Some(c) = children.get(&src) {
imports.entry(dst).or_default().extend(c)
}
import_deps(table, src, seen)?;
let Table { imports, .. } = table;
// Importing imports requires some extra work, since we can't `get_many_mut`
if let Some(i) = imports.get(&src) {
let uses: Vec<_> = i.iter().map(|(&k, &v)| (k, v)).collect();
imports.entry(dst).or_default().extend(uses);
}
Ok(())
}
fn import_name<'a>(
table: &mut Table<'a>,
src: Handle,
src_name: &Sym,
dst: Handle,
dst_name: &Sym,
seen: &mut Seen,
) -> UseResult<'a, ()> {
import_deps(table, src, seen)?;
match table.get_by_sym(src, src_name) {
// TODO: check for new imports clobbering existing imports
Some(src_id) => table.add_import(dst, *dst_name, src_id),
None => Err(Error::NotFound(src, PathPart::Ident(*src_name)))?,
};
Ok(())
}
/// Imports the dependencies of this node
fn import_deps<'a>(table: &mut Table<'a>, node: Handle, seen: &mut Seen) -> UseResult<'a, ()> {
if let Some(items) = table.use_items.get(&node) {
let out = items.clone();
for item in out {
import_one(table, item, seen)?;
}
}
Ok(())
}
pub type UseResult<'a, T> = Result<T, Error<'a>>;
#[derive(Debug)]
pub enum Error<'a> {
ItsNoUse,
NoParents,
NoSource,
BadSource(Source<'a>),
NotFound(Handle, PathPart),
}
impl std::fmt::Display for Error<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Error::ItsNoUse => write!(f, "Entry is not use"),
Error::NoParents => write!(f, "Entry has no parents"),
Error::NoSource => write!(f, "Entry has no source"),
Error::BadSource(s) => write!(f, "Entry incorrectly marked as use item: {s}"),
Error::NotFound(id, part) => write!(f, "Could not traverse {id}::{part}"),
}
}
}

View File

@@ -0,0 +1,179 @@
//! The [Populator] populates entries in the sym table, including span info
use crate::{
entry::EntryMut,
handle::Handle,
source::Source,
table::{NodeKind, Table},
};
use cl_ast::{ast_visitor::Visit, ItemKind, Sym};
#[derive(Debug)]
pub struct Populator<'t, 'a> {
inner: EntryMut<'t, 'a>,
name: Option<Sym>, // this is a hack to get around the Visitor interface
}
impl<'t, 'a> Populator<'t, 'a> {
pub fn new(table: &'t mut Table<'a>) -> Self {
Self { inner: table.root_entry_mut(), name: None }
}
/// Constructs a new Populator with the provided parent Handle
pub fn with_id(&mut self, parent: Handle) -> Populator<'_, 'a> {
Populator { inner: self.inner.with_id(parent), name: None }
}
pub fn new_entry(&mut self, kind: NodeKind) -> Populator<'_, 'a> {
Populator { inner: self.inner.new_entry(kind), name: None }
}
pub fn set_name(&mut self, name: Sym) {
self.name = Some(name);
}
}
impl<'a> Visit<'a> for Populator<'_, 'a> {
fn visit_item(&mut self, i: &'a cl_ast::Item) {
let cl_ast::Item { extents, attrs, vis, kind } = i;
// TODO: this, better, better.
let entry_kind = match kind {
ItemKind::Alias(_) => NodeKind::Type,
ItemKind::Enum(_) => NodeKind::Type,
ItemKind::Struct(_) => NodeKind::Type,
ItemKind::Const(_) => NodeKind::Const,
ItemKind::Static(_) => NodeKind::Static,
ItemKind::Function(_) => NodeKind::Function,
ItemKind::Module(_) => NodeKind::Module,
ItemKind::Impl(_) => NodeKind::Impl,
ItemKind::Use(_) => NodeKind::Use,
};
let mut entry = self.new_entry(entry_kind);
entry.inner.set_span(*extents);
entry.inner.set_meta(&attrs.meta);
entry.visit_span(extents);
entry.visit_attrs(attrs);
entry.visit_visibility(vis);
entry.visit_item_kind(kind);
if let (Some(name), child) = (entry.name, entry.inner.id()) {
self.inner.add_child(name, child);
}
}
fn visit_alias(&mut self, a: &'a cl_ast::Alias) {
let cl_ast::Alias { to, from } = a;
self.inner.set_source(Source::Alias(a));
self.set_name(*to);
if let Some(t) = from {
self.visit_ty(t)
}
}
fn visit_const(&mut self, c: &'a cl_ast::Const) {
let cl_ast::Const { name, ty, init } = c;
self.inner.set_source(Source::Const(c));
self.set_name(*name);
self.visit_ty(ty);
self.visit_expr(init);
}
fn visit_static(&mut self, s: &'a cl_ast::Static) {
let cl_ast::Static { mutable, name, ty, init } = s;
self.inner.set_source(Source::Static(s));
self.set_name(*name);
self.visit_mutability(mutable);
self.visit_ty(ty);
self.visit_expr(init);
}
fn visit_module(&mut self, m: &'a cl_ast::Module) {
let cl_ast::Module { name, kind } = m;
self.inner.set_source(Source::Module(m));
self.set_name(*name);
self.visit_module_kind(kind);
}
fn visit_function(&mut self, f: &'a cl_ast::Function) {
let cl_ast::Function { name, sign, bind, body } = f;
self.inner.set_source(Source::Function(f));
self.set_name(*name);
self.visit_ty_fn(sign);
bind.iter().for_each(|p| self.visit_param(p));
if let Some(b) = body {
self.visit_block(b)
}
}
fn visit_struct(&mut self, s: &'a cl_ast::Struct) {
let cl_ast::Struct { name, kind } = s;
self.inner.set_source(Source::Struct(s));
self.set_name(*name);
self.visit_struct_kind(kind);
}
fn visit_enum(&mut self, e: &'a cl_ast::Enum) {
let cl_ast::Enum { name, kind } = e;
self.inner.set_source(Source::Enum(e));
self.set_name(*name);
self.visit_enum_kind(kind);
}
fn visit_impl(&mut self, i: &'a cl_ast::Impl) {
let cl_ast::Impl { target, body } = i;
self.inner.set_source(Source::Impl(i));
self.inner.mark_impl_item();
self.visit_impl_kind(target);
self.visit_file(body);
}
fn visit_use(&mut self, u: &'a cl_ast::Use) {
let cl_ast::Use { absolute: _, tree } = u;
self.inner.set_source(Source::Use(u));
self.inner.mark_use_item();
self.visit_use_tree(tree);
}
fn visit_stmt(&mut self, s: &'a cl_ast::Stmt) {
let cl_ast::Stmt { extents, kind, semi } = s;
let cl_ast::StmtKind::Local(local) = kind else {
self.visit_span(extents);
self.visit_stmt_kind(kind);
self.visit_semi(semi);
return;
};
let mut entry = self.new_entry(NodeKind::Local);
entry.inner.set_span(*extents);
entry.visit_let(local);
if let (Some(name), child) = (entry.name, entry.inner.id()) {
self.inner.add_child(name, child);
}
}
fn visit_let(&mut self, l: &'a cl_ast::Let) {
let cl_ast::Let { mutable, name, ty, init } = l;
self.inner.set_source(Source::Local(l));
self.set_name(*name);
self.visit_mutability(mutable);
if let Some(ty) = ty {
self.visit_ty(ty);
}
if let Some(init) = init {
self.visit_expr(init)
}
}
}

View File

@@ -0,0 +1,308 @@
//! The [Table] is a monolithic data structure representing everything the type checker
//! knows about a program.
//!
//! Individual nodes in the table can be queried using the [Entry] API ([Table::entry])
//! or modified using the [EntryMut] API ([Table::entry_mut]).
//!
//! # Contents of a "node"
//! Always present:
//! - [NodeKind]: Determines how this node will be treated during the [stages](crate::stage) of
//! compilation
//! - [Parent node](Handle): Arranges this node in the hierarchical graph structure
//!
//! Populated as needed:
//! - Children: An associative array of [names](Sym) to child nodes in the graph. Child nodes are
//! arranged in a *strict* tree structure, with no back edges
//! - Imports: An associative array of [names](Sym) to other nodes in the graph. Not all import
//! nodes are back edges, but all back edges *must be* import nodes.
//! - [Types](TypeKind): Contains type information populated through type checking and inference.
//! Nodes with unpopulated types may be considered type variables in the future.
//! - [Spans][span]: Positional information from the source text. See [cl_structures::span].
//! - [Metas](Meta): Metadata decorators. These may have an effect throughout the compiler.
//! - [Sources](Source): Pointers back into the AST, for future analysis.
//! - Impl Targets: Sparse mapping of `impl` nodes to their corresponding targets.
//! - etc.
//!
//! [span]: struct@Span
use crate::{
entry::{Entry, EntryMut},
handle::Handle,
source::Source,
type_kind::TypeKind,
};
use cl_ast::{Meta, PathPart, Sym};
use cl_structures::{index_map::IndexMap, span::Span};
use std::collections::HashMap;
// TODO: Cycle detection external to this module
/// The table is a monolithic data structure representing everything the type checker
/// knows about a program.
///
/// See [module documentation](self).
#[derive(Debug)]
pub struct Table<'a> {
root: Handle,
/// This is the source of truth for handles
kinds: IndexMap<Handle, NodeKind>,
parents: IndexMap<Handle, Handle>,
pub(crate) children: HashMap<Handle, HashMap<Sym, Handle>>,
pub(crate) imports: HashMap<Handle, HashMap<Sym, Handle>>,
pub(crate) use_items: HashMap<Handle, Vec<Handle>>,
types: HashMap<Handle, TypeKind>,
spans: HashMap<Handle, Span>,
metas: HashMap<Handle, &'a [Meta]>,
sources: HashMap<Handle, Source<'a>>,
// code: HashMap<Handle, BasicBlock>, // TODO: lower sources
impl_targets: HashMap<Handle, Handle>,
anon_types: HashMap<TypeKind, Handle>,
// --- Queues for algorithms ---
pub(crate) impls: Vec<Handle>,
pub(crate) uses: Vec<Handle>,
}
impl<'a> Table<'a> {
pub fn new() -> Self {
let mut kinds = IndexMap::new();
let mut parents = IndexMap::new();
let root = kinds.insert(NodeKind::Root);
assert_eq!(root, parents.insert(root));
Self {
root,
kinds,
parents,
children: HashMap::new(),
imports: HashMap::new(),
use_items: HashMap::new(),
types: HashMap::new(),
spans: HashMap::new(),
metas: HashMap::new(),
sources: HashMap::new(),
impl_targets: HashMap::new(),
anon_types: HashMap::new(),
impls: Vec::new(),
uses: Vec::new(),
}
}
pub fn entry(&self, handle: Handle) -> Entry<'_, 'a> {
handle.to_entry(self)
}
pub fn entry_mut(&mut self, handle: Handle) -> EntryMut<'_, 'a> {
handle.to_entry_mut(self)
}
pub fn new_entry(&mut self, parent: Handle, kind: NodeKind) -> Handle {
let entry = self.kinds.insert(kind);
assert_eq!(entry, self.parents.insert(parent));
entry
}
pub fn add_child(&mut self, parent: Handle, name: Sym, child: Handle) -> Option<Handle> {
self.children.entry(parent).or_default().insert(name, child)
}
pub fn add_import(&mut self, parent: Handle, name: Sym, import: Handle) -> Option<Handle> {
self.imports.entry(parent).or_default().insert(name, import)
}
pub fn mark_use_item(&mut self, item: Handle) {
let parent = self.parents[item];
self.use_items.entry(parent).or_default().push(item);
self.uses.push(item);
}
pub fn mark_impl_item(&mut self, item: Handle) {
self.impls.push(item);
}
pub fn handle_iter(&mut self) -> impl Iterator<Item = Handle> {
self.kinds.keys()
}
/// Returns handles to all nodes sequentially by [Entry]
pub fn debug_entry_iter(&self) -> impl Iterator<Item = Entry<'_, 'a>> {
self.kinds.keys().map(|key| key.to_entry(self))
}
/// Gets the [Handle] of an anonymous type with the provided [TypeKind].
/// If not already present, a new one is created.
pub(crate) fn anon_type(&mut self, kind: TypeKind) -> Handle {
if let Some(id) = self.anon_types.get(&kind) {
return *id;
}
let entry = self.new_entry(self.root, NodeKind::Type);
// Anonymous types require a bijective map (anon_types => Def => types)
self.types.insert(entry, kind.clone());
self.anon_types.insert(kind, entry);
entry
}
pub const fn root_entry(&self) -> Entry<'_, 'a> {
self.root.to_entry(self)
}
pub fn root_entry_mut(&mut self) -> crate::entry::EntryMut<'_, 'a> {
self.root.to_entry_mut(self)
}
// --- inherent properties ---
pub const fn root(&self) -> Handle {
self.root
}
pub fn kind(&self, node: Handle) -> Option<&NodeKind> {
self.kinds.get(node)
}
pub fn parent(&self, node: Handle) -> Option<&Handle> {
self.parents.get(node)
}
pub fn children(&self, node: Handle) -> Option<&HashMap<Sym, Handle>> {
self.children.get(&node)
}
pub fn imports(&self, node: Handle) -> Option<&HashMap<Sym, Handle>> {
self.imports.get(&node)
}
pub fn ty(&self, node: Handle) -> Option<&TypeKind> {
self.types.get(&node)
}
pub fn span(&self, node: Handle) -> Option<&Span> {
self.spans.get(&node)
}
pub fn meta(&self, node: Handle) -> Option<&'a [Meta]> {
self.metas.get(&node).copied()
}
pub fn source(&self, node: Handle) -> Option<&Source<'a>> {
self.sources.get(&node)
}
pub fn impl_target(&self, node: Handle) -> Option<Handle> {
self.impl_targets.get(&node).copied()
}
pub fn set_ty(&mut self, node: Handle, kind: TypeKind) -> Option<TypeKind> {
self.types.insert(node, kind)
}
pub fn set_span(&mut self, node: Handle, span: Span) -> Option<Span> {
self.spans.insert(node, span)
}
pub fn set_meta(&mut self, node: Handle, meta: &'a [Meta]) -> Option<&'a [Meta]> {
self.metas.insert(node, meta)
}
pub fn set_source(&mut self, node: Handle, source: Source<'a>) -> Option<Source<'a>> {
self.sources.insert(node, source)
}
pub fn set_impl_target(&mut self, node: Handle, target: Handle) -> Option<Handle> {
self.impl_targets.insert(node, target)
}
// --- derived properties ---
/// Gets a handle to the local `Self` type, if one exists
pub fn selfty(&self, node: Handle) -> Option<Handle> {
match self.kinds.get(node)? {
NodeKind::Root | NodeKind::Use => None,
NodeKind::Type => Some(node),
NodeKind::Impl => self.impl_target(node),
_ => self.selfty(*self.parent(node)?),
}
}
pub fn name(&self, node: Handle) -> Option<Sym> {
self.source(node).and_then(|s| s.name())
}
pub fn is_transparent(&self, node: Handle) -> bool {
!matches!(
self.kind(node),
None | Some(NodeKind::Root | NodeKind::Module)
)
}
pub fn get_child(&self, node: Handle, name: &Sym) -> Option<Handle> {
self.children.get(&node).and_then(|c| c.get(name)).copied()
}
pub fn get_import(&self, node: Handle, name: &Sym) -> Option<Handle> {
self.imports.get(&node).and_then(|i| i.get(name)).copied()
}
pub fn get_by_sym(&self, node: Handle, name: &Sym) -> Option<Handle> {
self.get_child(node, name)
.or_else(|| self.get_import(node, name))
.or_else(|| {
self.is_transparent(node)
.then(|| {
self.parent(node)
.and_then(|node| self.get_by_sym(*node, name))
})
.flatten()
})
}
/// Does path traversal relative to the provided `node`.
pub fn nav(&self, node: Handle, path: &[PathPart]) -> Option<Handle> {
match path {
[PathPart::SuperKw, rest @ ..] => self.nav(*self.parent(node)?, rest),
[PathPart::SelfKw, rest @ ..] => self.nav(node, rest),
[PathPart::SelfTy, rest @ ..] => self.nav(self.selfty(node)?, rest),
[PathPart::Ident(name), rest @ ..] => self.nav(self.get_by_sym(node, name)?, rest),
[] => Some(node),
}
}
}
impl<'a> Default for Table<'a> {
fn default() -> Self {
Self::new()
}
}
#[derive(Clone, Copy, Debug)]
pub enum NodeKind {
Root,
Module,
Type,
Const,
Static,
Function,
Local,
Impl,
Use,
}
mod display {
use super::*;
use std::fmt;
impl fmt::Display for NodeKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
NodeKind::Root => write!(f, "root"),
NodeKind::Module => write!(f, "mod"),
NodeKind::Type => write!(f, "type"),
NodeKind::Const => write!(f, "const"),
NodeKind::Static => write!(f, "static"),
NodeKind::Function => write!(f, "fn"),
NodeKind::Local => write!(f, "local"),
NodeKind::Use => write!(f, "use"),
NodeKind::Impl => write!(f, "impl"),
}
}
}
}

View File

@@ -0,0 +1,127 @@
//! A [TypeExpression] is a [syntactic](cl_ast) representation of a [TypeKind], and is used to
//! construct type bindings in a [Table]'s typing context.
use crate::{handle::Handle, table::Table, type_kind::TypeKind};
use cl_ast::{PathPart, Ty, TyArray, TyFn, TyKind, TyRef, TySlice, TyTuple};
#[derive(Clone, Debug, PartialEq, Eq)] // TODO: impl Display and Error
pub enum Error {
BadPath { parent: Handle, path: Vec<PathPart> },
}
impl std::error::Error for Error {}
impl std::fmt::Display for Error {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Error::BadPath { parent, path } => {
write!(f, "No item at path {parent}")?;
for part in path {
write!(f, "::{part}")?;
}
}
}
Ok(())
}
}
/// A [TypeExpression] is a syntactic representation of a [TypeKind], and is used to construct
/// type bindings in a [Table]'s typing context.
pub trait TypeExpression<Out = Handle> {
/// Evaluates a type expression, recursively creating intermediate bindings.
fn evaluate(&self, table: &mut Table, node: Handle) -> Result<Out, Error>;
}
impl TypeExpression for Ty {
fn evaluate(&self, table: &mut Table, node: Handle) -> Result<Handle, Error> {
self.kind.evaluate(table, node)
}
}
impl TypeExpression for TyKind {
fn evaluate(&self, table: &mut Table, node: Handle) -> Result<Handle, Error> {
match self {
TyKind::Never => Ok(table.anon_type(TypeKind::Never)),
TyKind::Empty => Ok(table.anon_type(TypeKind::Empty)),
TyKind::Path(p) => p.evaluate(table, node),
TyKind::Array(a) => a.evaluate(table, node),
TyKind::Slice(s) => s.evaluate(table, node),
TyKind::Tuple(t) => t.evaluate(table, node),
TyKind::Ref(r) => r.evaluate(table, node),
TyKind::Fn(f) => f.evaluate(table, node),
}
}
}
impl TypeExpression for cl_ast::Path {
fn evaluate(&self, table: &mut Table, node: Handle) -> Result<Handle, Error> {
let Self { absolute, parts } = self;
parts.evaluate(table, if *absolute { table.root() } else { node })
}
}
impl TypeExpression for [PathPart] {
fn evaluate(&self, table: &mut Table, node: Handle) -> Result<Handle, Error> {
table
.nav(node, self)
.ok_or_else(|| Error::BadPath { parent: node, path: self.to_owned() })
}
}
impl TypeExpression for TyArray {
fn evaluate(&self, table: &mut Table, node: Handle) -> Result<Handle, Error> {
let Self { ty, count } = self;
let kind = TypeKind::Array(ty.evaluate(table, node)?, *count);
Ok(table.anon_type(kind))
}
}
impl TypeExpression for TySlice {
fn evaluate(&self, table: &mut Table, node: Handle) -> Result<Handle, Error> {
let Self { ty } = self;
let kind = TypeKind::Slice(ty.evaluate(table, node)?);
Ok(table.anon_type(kind))
}
}
impl TypeExpression for TyTuple {
fn evaluate(&self, table: &mut Table, node: Handle) -> Result<Handle, Error> {
let Self { types } = self;
let kind = match types.len() {
0 => TypeKind::Empty,
_ => TypeKind::Tuple(types.evaluate(table, node)?),
};
Ok(table.anon_type(kind))
}
}
impl TypeExpression for TyRef {
fn evaluate(&self, table: &mut Table, node: Handle) -> Result<Handle, Error> {
let Self { mutable: _, count, to } = self;
let kind = TypeKind::Ref(*count, to.evaluate(table, node)?);
Ok(table.anon_type(kind))
}
}
impl TypeExpression for TyFn {
fn evaluate(&self, table: &mut Table, node: Handle) -> Result<Handle, Error> {
let Self { args, rety } = self;
let kind = TypeKind::FnSig {
args: args.evaluate(table, node)?,
rety: match rety {
Some(ty) => ty.evaluate(table, node)?,
None => TyKind::Empty.evaluate(table, node)?,
},
};
Ok(table.anon_type(kind))
}
}
impl<T: TypeExpression<U>, U> TypeExpression<Vec<U>> for [T] {
fn evaluate(&self, table: &mut Table, node: Handle) -> Result<Vec<U>, Error> {
let mut out = Vec::with_capacity(self.len());
for te in self {
out.push(te.evaluate(table, node)?) // try_collect is unstable
}
Ok(out)
}
}

View File

@@ -1,110 +1,31 @@
use crate::{ //! A [TypeKind] is a node in the [Table](crate::table::Table)'s type graph
handle::DefID,
module::Module, use crate::handle::Handle;
node::{Node, NodeSource}, use cl_ast::{Sym, Visibility};
};
use cl_ast::{Meta, Sym, Visibility};
use std::{fmt::Debug, str::FromStr}; use std::{fmt::Debug, str::FromStr};
mod display; mod display;
#[derive(Clone, Debug, PartialEq, Eq)] /// A [TypeKind] represents an item
pub struct Def<'a> { /// (a component of a [Table](crate::table::Table))
pub node: Node<'a>,
pub kind: DefKind,
pub module: Module,
}
impl<'a> Def<'a> {
pub fn with_node(node: Node<'a>) -> Self {
Self { node, kind: DefKind::Undecided, module: Default::default() }
}
}
impl Def<'_> {
pub fn name(&self) -> Option<Sym> {
match self.node.kind {
Some(source) => source.name(),
None => None,
}
}
pub fn is_transparent(&self) -> bool {
!matches!(self.kind, DefKind::Type(_))
}
}
mod builder_functions {
use super::*;
impl<'a> Def<'a> {
pub fn set_vis(&mut self, vis: Visibility) -> &mut Self {
self.node.vis = vis;
self
}
pub fn set_meta(&mut self, meta: &'a [Meta]) -> &mut Self {
self.node.meta = meta;
self
}
pub fn set_kind(&mut self, kind: DefKind) -> &mut Self {
self.kind = kind;
self
}
pub fn set_source(&mut self, source: NodeSource<'a>) -> &mut Self {
self.node.kind = Some(source);
self
}
pub fn set_module(&mut self, module: Module) -> &mut Self {
self.module = module;
self
}
}
}
#[derive(Clone, Default, Debug, PartialEq, Eq)]
pub enum DefKind {
/// An unevaluated definition
#[default]
Undecided,
/// An impl block
Impl(DefID),
/// A use tree, and its parent
Use(DefID),
/// A type, such as a `type`, `struct`, or `enum`
Type(TypeKind),
/// A value, such as a `const`, `static`, or `fn`
Value(ValueKind),
}
/// A [ValueKind] represents an item in the Value Namespace
/// (a component of a [Project](crate::project::Project)).
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum ValueKind {
Const(DefID),
Static(DefID),
Local(DefID),
Fn(DefID),
}
/// A [TypeKind] represents an item in the Type Namespace
/// (a component of a [Project](crate::project::Project)).
#[derive(Clone, Debug, PartialEq, Eq, Hash)] #[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum TypeKind { pub enum TypeKind {
/// An alias for an already-defined type /// An alias for an already-defined type
Alias(Option<DefID>), Instance(Handle),
/// A primitive type, built-in to the compiler /// A primitive type, built-in to the compiler
Intrinsic(Intrinsic), Intrinsic(Intrinsic),
/// A user-defined aromatic data type /// A user-defined aromatic data type
Adt(Adt), Adt(Adt),
/// A reference to an already-defined type: &T /// A reference to an already-defined type: &T
Ref(u16, DefID), Ref(u16, Handle),
/// A contiguous view of dynamically sized memory /// A contiguous view of dynamically sized memory
Slice(DefID), Slice(Handle),
/// A contiguous view of statically sized memory /// A contiguous view of statically sized memory
Array(DefID, usize), Array(Handle, usize),
/// A tuple of existing types /// A tuple of existing types
Tuple(Vec<DefID>), Tuple(Vec<Handle>),
/// A function which accepts multiple inputs and produces an output /// A function which accepts multiple inputs and produces an output
FnSig { args: DefID, rety: DefID }, FnSig { args: Handle, rety: Handle },
/// The unit type /// The unit type
Empty, Empty,
/// The never type /// The never type
@@ -117,22 +38,18 @@ pub enum TypeKind {
#[derive(Clone, Debug, PartialEq, Eq, Hash)] #[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum Adt { pub enum Adt {
/// A union-like enum type /// A union-like enum type
Enum(Vec<(Sym, Option<DefID>)>), Enum(Vec<(Sym, Option<Handle>)>),
/// A C-like enum
CLikeEnum(Vec<(Sym, u128)>),
/// An enum with no fields, which can never be constructed
FieldlessEnum,
/// A structural product type with named members /// A structural product type with named members
Struct(Vec<(Sym, Visibility, DefID)>), Struct(Vec<(Sym, Visibility, Handle)>),
/// A structural product type with unnamed members /// A structural product type with unnamed members
TupleStruct(Vec<(Visibility, DefID)>), TupleStruct(Vec<(Visibility, Handle)>),
/// A structural product type of neither named nor unnamed members /// A structural product type of neither named nor unnamed members
UnitStruct, UnitStruct,
/// A choose your own undefined behavior type /// A choose your own undefined behavior type
/// TODO: should unions be a language feature? /// TODO: should unions be a language feature?
Union(Vec<(Sym, DefID)>), Union(Vec<(Sym, Handle)>),
} }
/// The set of compiler-intrinsic types. /// The set of compiler-intrinsic types.

View File

@@ -1,60 +1,14 @@
//! [Display] implementations for [TypeKind], [Adt], and [Intrinsic] //! [Display] implementations for [TypeKind], [Adt], and [Intrinsic]
use super::{Adt, Def, DefKind, Intrinsic, TypeKind, ValueKind}; use super::{Adt, Intrinsic, TypeKind};
use crate::{format_utils::*, node::Node}; use crate::format_utils::*;
use cl_ast::format::FmtAdapter; use cl_ast::format::FmtAdapter;
use std::fmt::{self, Display, Write}; use std::fmt::{self, Display, Write};
impl Display for Def<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let Self { module, node: Node { in_path: _, span: _, meta, vis, kind: source }, kind } =
self;
if !meta.is_empty() {
writeln!(f, "#{meta:?}")?;
}
if let Some(source) = source {
if let Some(name) = source.name() {
writeln!(f, "{vis}{name}:")?;
}
writeln!(f.indent(), "source:\n{source}")?;
} else {
writeln!(f, "{vis}: ")?;
}
writeln!(f, "kind: {kind}")?;
write!(f, "module: {module}")
}
}
impl Display for DefKind {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
DefKind::Undecided => write!(f, "undecided"),
DefKind::Impl(id) => write!(f, "impl {id}"),
DefKind::Use(id) => write!(f, "use (inside {id})"),
DefKind::Type(kind) => write!(f, "{kind}"),
DefKind::Value(kind) => write!(f, "{kind}"),
}
}
}
impl std::fmt::Display for ValueKind {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
ValueKind::Const(id) => write!(f, "const ({id})"),
ValueKind::Static(id) => write!(f, "static ({id})"),
ValueKind::Local(id) => write!(f, "let ({id})"),
ValueKind::Fn(id) => write!(f, "fn def ({id})"),
}
}
}
impl Display for TypeKind { impl Display for TypeKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self { match self {
TypeKind::Alias(def) => match def { TypeKind::Instance(def) => write!(f, "alias to #{def}"),
Some(def) => write!(f, "alias to #{def}"),
None => f.write_str("type"),
},
TypeKind::Intrinsic(i) => i.fmt(f), TypeKind::Intrinsic(i) => i.fmt(f),
TypeKind::Adt(a) => a.fmt(f), TypeKind::Adt(a) => a.fmt(f),
TypeKind::Ref(cnt, def) => { TypeKind::Ref(cnt, def) => {
@@ -93,14 +47,6 @@ impl Display for Adt {
}) })
})(f.delimit_with("enum {", "}")) })(f.delimit_with("enum {", "}"))
} }
Adt::CLikeEnum(variants) => {
let mut variants = variants.iter();
separate(", ", || {
let (name, descrim) = variants.next()?;
Some(move |f: &mut Delimit<_>| write!(f, "{name} = {descrim}"))
})(f.delimit_with("enum {", "}"))
}
Adt::FieldlessEnum => write!(f, "enum"),
Adt::Struct(members) => { Adt::Struct(members) => {
let mut members = members.iter(); let mut members = members.iter();
separate(", ", || { separate(", ", || {

View File

@@ -1,336 +0,0 @@
//! Performs step 2 of type checking: Evaluating type definitions
use crate::{
definition::{Adt, Def, DefKind, TypeKind, ValueKind},
handle::DefID,
node::{Node, NodeSource},
project::{evaluate::EvaluableTypeExpression, Project as Prj},
};
use cl_ast::*;
/// Evaluate a single ID
pub fn resolve(prj: &mut Prj, id: DefID) -> Result<(), &'static str> {
let Def { node: Node { kind: Some(source), meta, .. }, kind: DefKind::Undecided, .. } = prj[id]
else {
return Ok(());
};
let kind = match &source {
NodeSource::Root => "root",
NodeSource::Alias(_) => "type",
NodeSource::Module(_) => "mod",
NodeSource::Enum(_) => "enum",
NodeSource::Variant(_) => "variant",
NodeSource::Struct(_) => "struct",
NodeSource::Const(_) => "const",
NodeSource::Static(_) => "static",
NodeSource::Function(_) => "fn",
NodeSource::Impl(_) => "impl",
NodeSource::Use(_) => "use",
NodeSource::Local(_) => "let",
NodeSource::Ty(_) => "ty",
};
let name = prj[id].name().unwrap_or("".into());
eprintln!("Resolver: \x1b[32mEvaluating\x1b[0m \"\x1b[36m{kind} {name}\x1b[0m\" (`{id:?}`)");
for Meta { name, kind } in meta {
if let ("intrinsic", MetaKind::Equals(Literal::String(s))) = (&**name, kind) {
prj[id].kind = DefKind::Type(TypeKind::Intrinsic(
s.parse().map_err(|_| "Failed to parse intrinsic")?,
));
}
}
if DefKind::Undecided == prj[id].kind {
prj[id].kind = source.resolve_type(prj, id)?;
}
eprintln!("\x1b[33m=> {}\x1b[0m", prj[id].kind);
Ok(())
}
/// Resolves a given node
pub trait TypeResolvable<'a> {
/// The return type upon success
type Out;
/// Resolves type expressions within this node
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str>;
}
impl<'a> TypeResolvable<'a> for NodeSource<'a> {
type Out = DefKind;
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
match self {
NodeSource::Root => Ok(DefKind::Type(TypeKind::Module)),
NodeSource::Module(v) => v.resolve_type(prj, id),
NodeSource::Alias(v) => v.resolve_type(prj, id),
NodeSource::Enum(v) => v.resolve_type(prj, id),
NodeSource::Variant(v) => v.resolve_type(prj, id),
NodeSource::Struct(v) => v.resolve_type(prj, id),
NodeSource::Const(v) => v.resolve_type(prj, id),
NodeSource::Static(v) => v.resolve_type(prj, id),
NodeSource::Function(v) => v.resolve_type(prj, id),
NodeSource::Local(v) => v.resolve_type(prj, id),
NodeSource::Impl(v) => v.resolve_type(prj, id),
NodeSource::Use(v) => v.resolve_type(prj, id),
NodeSource::Ty(v) => v.resolve_type(prj, id),
}
}
}
impl<'a> TypeResolvable<'a> for &'a Meta {
type Out = DefKind;
#[allow(unused_variables)]
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
let Meta { name, kind } = self;
match (name.as_ref(), kind) {
("intrinsic", MetaKind::Equals(Literal::String(intrinsic))) => Ok(DefKind::Type(
TypeKind::Intrinsic(intrinsic.parse().map_err(|_| "unknown intrinsic type")?),
)),
(_, MetaKind::Plain) => Ok(DefKind::Type(TypeKind::Intrinsic(
name.parse().map_err(|_| "Unknown intrinsic type")?,
))),
_ => Err("Unknown meta attribute"),
}
}
}
impl<'a> TypeResolvable<'a> for &'a Module {
type Out = DefKind;
#[allow(unused_variables)]
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
Ok(DefKind::Type(TypeKind::Module))
}
}
impl<'a> TypeResolvable<'a> for &'a Alias {
type Out = DefKind;
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
let parent = prj.parent_of(id).unwrap_or(id);
let alias = if let Some(ty) = &self.from {
Some(
ty.evaluate(prj, parent)
.or_else(|_| ty.evaluate(prj, id))
.map_err(|_| "Unresolved type in alias")?,
)
} else {
None
};
Ok(DefKind::Type(TypeKind::Alias(alias)))
}
}
impl<'a> TypeResolvable<'a> for &'a Enum {
type Out = DefKind;
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
let Enum { name: _, kind } = self;
let EnumKind::Variants(v) = kind else {
return Ok(DefKind::Type(TypeKind::Adt(Adt::FieldlessEnum)));
};
let mut fields = vec![];
for Variant { name, kind: _ } in v {
let id = prj[id].module.get_type(*name);
fields.push((*name, id))
}
Ok(DefKind::Type(TypeKind::Adt(Adt::Enum(fields))))
}
}
impl<'a> TypeResolvable<'a> for &'a Variant {
type Out = DefKind;
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
// Get the grandparent of this node, for name resolution
let parent = prj.parent_of(id).unwrap_or(id);
let grandparent = prj.parent_of(parent).unwrap_or(parent);
let Variant { name: _, kind } = self;
Ok(DefKind::Type(match kind {
VariantKind::Plain => return Ok(DefKind::Type(TypeKind::Empty)),
VariantKind::CLike(_) => return Ok(DefKind::Undecided),
VariantKind::Tuple(ty) => match &ty.kind {
TyKind::Empty => TypeKind::Tuple(vec![]),
TyKind::Tuple(TyTuple { types }) => {
TypeKind::Tuple(types.evaluate(prj, grandparent).map_err(|e| {
eprintln!("{e}");
""
})?)
}
_ => Err("Unexpected TyKind in tuple variant")?,
},
VariantKind::Struct(members) => {
TypeKind::Adt(Adt::Struct(members.resolve_type(prj, parent)?))
}
}))
}
}
impl<'a> TypeResolvable<'a> for &'a Struct {
type Out = DefKind;
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
let parent = prj.parent_of(id).unwrap_or(id);
let Struct { name: _, kind } = self;
Ok(match kind {
StructKind::Empty => DefKind::Type(TypeKind::Empty),
StructKind::Tuple(types) => DefKind::Type(TypeKind::Adt(Adt::TupleStruct({
let mut out = vec![];
for ty in types {
out.push((
Visibility::Public,
ty.evaluate(prj, parent)
.map_err(|_| "Unresolved type in tuple-struct member")?,
));
}
out
}))),
StructKind::Struct(members) => {
DefKind::Type(TypeKind::Adt(Adt::Struct(members.resolve_type(prj, id)?)))
}
})
}
}
impl<'a> TypeResolvable<'a> for &'a StructMember {
type Out = (Sym, Visibility, DefID);
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
let parent = prj.parent_of(id).unwrap_or(id);
let StructMember { name, vis, ty } = self;
let ty = ty
.evaluate(prj, parent)
.map_err(|_| "Invalid type while resolving StructMember")?;
Ok((*name, *vis, ty))
}
}
impl<'a> TypeResolvable<'a> for &'a Const {
type Out = DefKind;
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
let Const { ty, .. } = self;
let ty = ty
.evaluate(prj, id)
.map_err(|_| "Invalid type while resolving const")?;
Ok(DefKind::Value(ValueKind::Const(ty)))
}
}
impl<'a> TypeResolvable<'a> for &'a Static {
type Out = DefKind;
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
let parent = prj.parent_of(id).unwrap_or(id);
let Static { ty, .. } = self;
let ty = ty
.evaluate(prj, parent)
.map_err(|_| "Invalid type while resolving static")?;
Ok(DefKind::Value(ValueKind::Static(ty)))
}
}
impl<'a> TypeResolvable<'a> for &'a Function {
type Out = DefKind;
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
let parent = prj.parent_of(id).unwrap_or(id);
let Function { sign, .. } = self;
let sign = sign
.evaluate(prj, parent)
.map_err(|_| "Invalid type in function signature")?;
Ok(DefKind::Value(ValueKind::Fn(sign)))
}
}
impl<'a> TypeResolvable<'a> for &'a Let {
type Out = DefKind;
#[allow(unused)]
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
let Let { mutable, name, ty, init } = self;
Ok(DefKind::Undecided)
}
}
impl<'a> TypeResolvable<'a> for &'a Impl {
type Out = DefKind;
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
let parent = prj.parent_of(id).unwrap_or(id);
let target = match &self.target {
ImplKind::Type(t) => t.evaluate(prj, parent),
ImplKind::Trait { for_type, .. } => for_type.evaluate(prj, parent),
}
.map_err(|_| "Unresolved type in impl target")?;
match prj.pool.get_many_mut([id, target]) {
// TODO: Better error handling
Err(_) => Err(concat!(
file!(),
line!(),
column!(),
"id and target are same"
))?,
Ok([id, target]) => {
for (name, def) in &id.module.types {
target.module.insert_type(*name, *def);
}
for (name, def) in &id.module.values {
target.module.insert_value(*name, *def);
}
}
}
Ok(DefKind::Impl(target))
}
}
impl<'a> TypeResolvable<'a> for &'a Use {
type Out = DefKind;
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
todo!("Resolve types for {self} with ID {id} in {prj:?}")
}
}
impl<'a> TypeResolvable<'a> for &'a TyKind {
type Out = DefKind;
#[allow(unused)]
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
todo!()
}
}
impl<'a, T> TypeResolvable<'a> for &'a [T]
where &'a T: TypeResolvable<'a>
{
type Out = Vec<<&'a T as TypeResolvable<'a>>::Out>;
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
let mut members = vec![];
for member in self {
members.push(member.resolve_type(prj, id)?);
}
Ok(members)
}
}
impl<'a, T> TypeResolvable<'a> for Option<&'a T>
where &'a T: TypeResolvable<'a>
{
type Out = Option<<&'a T as TypeResolvable<'a>>::Out>;
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
match self {
Some(t) => Some(t.resolve_type(prj, id)).transpose(),
None => Ok(None),
}
}
}

View File

@@ -1,125 +0,0 @@
//! WIP use-item importer. This performs eager import resolution on the AST
//!
//! # TODOs:
//! - [ ] Resolve imports using a graph traversal rather than linear iteration
//! - [ ] Separate imported items from natively declared items
//! - [ ] Separate the use-import pass from the project
//! - [ ] Report errors in a meaningful way
//! - [ ] Lazy import resolution using graph-edge traversal during name lookup?
//! - It doesn't seem to me like the imports in a given scope *can change*.
#![allow(unused)]
use std::fmt::format;
use cl_ast::*;
use crate::{
definition::{Def, DefKind},
handle::DefID,
node::NodeSource,
project::Project,
};
type UseResult = Result<(), String>;
impl<'a> Project<'a> {
pub fn resolve_imports(&mut self) -> UseResult {
for id in self.pool.keys() {
self.visit_def(id)?;
}
Ok(())
}
pub fn visit_def(&mut self, id: DefID) -> UseResult {
let Def { kind, node, module } = &self.pool[id];
if let (DefKind::Use(parent), Some(NodeSource::Use(u))) = (kind, node.kind) {
println!("Importing use item {u}");
self.visit_use(u, *parent);
}
Ok(())
}
pub fn visit_use(&mut self, u: &'a Use, parent: DefID) -> UseResult {
let Use { absolute, tree } = u;
self.visit_use_tree(tree, parent, if *absolute { self.root } else { parent })
}
pub fn visit_use_tree(&mut self, tree: &'a UseTree, parent: DefID, c: DefID) -> UseResult {
match tree {
UseTree::Tree(trees) => {
for tree in trees {
self.visit_use_tree(tree, parent, c)?;
}
}
UseTree::Path(part, rest) => {
let c = self.evaluate(part, c)?;
self.visit_use_tree(rest, parent, c)?;
}
UseTree::Name(name) => self.visit_use_leaf(name, parent, c)?,
UseTree::Alias(from, to) => self.visit_use_alias(from, to, parent, c)?,
UseTree::Glob => self.visit_use_glob(parent, c)?,
}
Ok(())
}
pub fn visit_use_path(&mut self) -> UseResult {
Ok(())
}
pub fn visit_use_leaf(&mut self, name: &'a Sym, parent: DefID, c: DefID) -> UseResult {
self.visit_use_alias(name, name, parent, c)
}
pub fn visit_use_alias(
&mut self,
from: &Sym,
name: &Sym,
parent: DefID,
c: DefID,
) -> UseResult {
let mut imported = false;
let c_mod = &self[c].module;
let (tid, vid) = (
c_mod.types.get(from).copied(),
c_mod.values.get(from).copied(),
);
let parent = &mut self[parent].module;
if let Some(tid) = tid {
parent.types.insert(*name, tid);
imported = true;
}
if let Some(vid) = vid {
parent.values.insert(*name, vid);
imported = true;
}
if imported {
Ok(())
} else {
Err(format!("Identifier {name} not found in module {c}"))
}
}
pub fn visit_use_glob(&mut self, parent: DefID, c: DefID) -> UseResult {
// Loop over all the items in c, and add them as items in the parent
if parent == c {
return Ok(());
}
let [parent, c] = self
.pool
.get_many_mut([parent, c])
.expect("parent and c are not the same");
for (k, v) in &c.module.types {
parent.module.types.entry(*k).or_insert(*v);
}
for (k, v) in &c.module.values {
parent.module.values.entry(*k).or_insert(*v);
}
Ok(())
}
}

View File

@@ -62,3 +62,18 @@ fn if_else() -> i32 {
} }
// block 4 // block 4
} }
mod horrible_imports {
mod foo {
use super::{bar::*, baz::*};
struct Foo(&Foo, &Bar)
}
mod bar {
use super::{foo::*, baz::*};
struct Bar(&Foo, &Baz)
}
mod baz {
use super::{foo::*, bar::*};
struct Baz(&Foo, &Bar)
}
}