cl-typeck: Crate-spanning refactor part 2

- Removed all unreferenced files
- Reimplemented missing/nonfunctional behavior
- Added module documentation for most things
  - TODO: item-level docs on Entry(Mut)
- Reparented the stages of Table population into the `stage` module.
  - TODO: rewrite type inference to use only the tools provided by Table.
This commit is contained in:
John 2024-07-25 05:55:11 -05:00
parent e19127facc
commit fe2b816f27
19 changed files with 524 additions and 1181 deletions

View File

@ -1,7 +1,4 @@
use cl_typeck::{
entry::Entry, import::import, populate::Populator, table::Table,
type_expression::TypeExpression,
};
use cl_typeck::{entry::Entry, stage::*, table::Table, type_expression::TypeExpression};
use cl_ast::{
ast_visitor::{Fold, Visit},
@ -18,7 +15,7 @@ const STDLIB_DISPLAY_PATH: &str = "stdlib/lib.cl";
const STDLIB: &str = include_str!("../../../stdlib/lib.cl");
// Colors
const C_MAIN: &str = "";
const C_MAIN: &str = C_LISTING;
const C_RESV: &str = "\x1b[35m";
const C_CODE: &str = "\x1b[36m";
const C_BYID: &str = "\x1b[95m";
@ -148,56 +145,65 @@ fn get_by_id(prj: &mut Table) -> Result<(), RlError> {
}
println!();
let Some(handle) = handle.nav(&path.parts) else {
let Some(entry) = handle.nav(&path.parts) else {
Err("No results.")?
};
pretty_handle(handle)?;
pretty_handle(entry)?;
Ok(Response::Accept)
})
}
fn resolve_all(prj: &mut Table) -> Result<(), Box<dyn Error>> {
println!("Resolving imports:");
for (id, error) in import(prj) {
eprintln!("{error} in {} ({id})", id.to_entry(prj))
fn resolve_all(table: &mut Table) -> Result<(), Box<dyn Error>> {
for (id, error) in import(table) {
eprintln!("{error} in {} ({id})", id.to_entry(table))
}
// todo!("Resolve imports");
// prj.resolve_imports()?;
// for id in prj.pool.keys() {
// resolve(prj, id)?;
// }
// println!("Types resolved successfully!");
for handle in table.handle_iter() {
if let Err(error) = handle.to_entry_mut(table).categorize() {
eprintln!("{error}");
}
}
for handle in implement(table) {
eprintln!("Unable to reparent {} ({handle})", handle.to_entry(table))
}
println!("...Resolved!");
Ok(())
}
fn list_types(prj: &mut Table) {
for handle in prj.debug_handle_iter() {
fn list_types(table: &mut Table) {
for handle in table.debug_entry_iter() {
let id = handle.id();
let kind = handle.kind().unwrap();
let name = handle.name().unwrap_or("".into());
println!("{id:3}: {name:16}| {kind} {handle}");
println!("{id:3}: {name:16}| {kind}: {handle}");
}
}
fn pretty_handle(h: Entry) -> Result<(), std::io::Error> {
fn pretty_handle(entry: Entry) -> Result<(), std::io::Error> {
use std::io::Write;
let mut out = std::io::stdout().lock();
let Some(kind) = h.kind() else {
return writeln!(out, "Invalid handle: {h}");
let Some(kind) = entry.kind() else {
return writeln!(out, "{entry}");
};
write!(out, "{C_LISTING}{kind}")?;
if let Some(name) = h.name() {
if let Some(name) = entry.name() {
write!(out, " {name}")?;
}
writeln!(out, "\x1b[0m: {h}")?;
writeln!(out, "\x1b[0m ({}): {entry}", entry.id())?;
if let Some(parent) = h.parent() {
writeln!(out, "- {C_LISTING}Parent\x1b[0m: {parent}")?;
if let Some(parent) = entry.parent() {
writeln!(
out,
"- {C_LISTING}Parent\x1b[0m: {parent} ({})",
parent.id()
)?;
}
if let Some(span) = h.span() {
if let Some(span) = entry.span() {
writeln!(
out,
"- {C_LISTING}Span:\x1b[0m ({}, {})",
@ -205,7 +211,7 @@ fn pretty_handle(h: Entry) -> Result<(), std::io::Error> {
)?;
}
match h.meta() {
match entry.meta() {
Some(meta) if !meta.is_empty() => {
writeln!(out, "- {C_LISTING}Meta:\x1b[0m")?;
for meta in meta {
@ -215,46 +221,28 @@ fn pretty_handle(h: Entry) -> Result<(), std::io::Error> {
_ => {}
}
if let Some(children) = h.children() {
if let Some(children) = entry.children() {
writeln!(out, "- {C_LISTING}Children:\x1b[0m")?;
for (name, child) in children {
writeln!(
out,
" - {C_LISTING}{name}\x1b[0m ({child}): {}",
h.with_id(*child)
entry.with_id(*child)
)?
}
}
if let Some(imports) = h.imports() {
if let Some(imports) = entry.imports() {
writeln!(out, "- {C_LISTING}Imports:\x1b[0m")?;
for (name, child) in imports {
writeln!(
out,
" - {C_LISTING}{name}\x1b[0m ({child}): {}",
h.with_id(*child)
entry.with_id(*child)
)?
}
}
// let Some(vis) = handle.vis() else {
// return writeln!(stdout, "Invalid handle: {handle}");
// };
// writeln!(stdout, "{C_LISTING}{}\x1b[0m: {vis}{handle}", handle.id())?;
// if let Some(parent) = handle.parent() {
// }
// if let Some(types) = handle.types() {
// writeln!(stdout, "{C_LISTING}Types:\x1b[0m")?;
// for (name, def) in types {
// }
// }
// if let Some(values) = handle.values() {
// writeln!(stdout, "{C_LISTING}Values:\x1b[0m")?;
// for (name, def) in values {
// writeln!(stdout, "- {C_LISTING}{name}\x1b[0m: {}", handle.with(*def))?
// }
// }
// write!(stdout, "\x1b[0m")
Ok(())
}

View File

@ -1,69 +0,0 @@
//! Categorizes all top-level entries in a table
use crate::{
handle::Handle,
source::Source,
table::Table,
type_expression::{Error as TypeEval, TypeExpression},
type_kind::TypeKind,
};
use cl_ast::*;
/// Ensures a type entry exists for the provided handle in the table
pub fn categorize(table: &mut Table, node: Handle) -> CatResult<()> {
let Some(source) = table.source(node) else {
Err(Error::NoSource)?
};
match source {
Source::Root => {}
Source::Module(_) => {}
Source::Alias(a) => categorize_alias(table, node, a)?,
Source::Enum(_) => todo!(),
Source::Variant(_) => todo!(),
Source::Struct(_) => todo!(),
Source::Const(_) => todo!(),
Source::Static(_) => todo!(),
Source::Function(_) => todo!(),
Source::Local(_) => todo!(),
Source::Impl(_) => todo!(),
Source::Use(_) => todo!(),
Source::Ty(ty) => {
ty.evaluate(table, node)?;
}
}
todo!("categorize {node} in {table:?}")
}
pub fn categorize_alias(table: &mut Table, node: Handle, a: &Alias) -> CatResult<()> {
let kind = match &a.from {
Some(ty) => TypeKind::Alias(ty.evaluate(table, node)?),
None => TypeKind::Empty,
};
table.set_ty(node, kind);
Ok(())
}
pub fn categorize_const(table: &mut Table, node: Handle, c: &Const) -> CatResult<()> {
let kind = TypeKind::Alias(c.ty.evaluate(table, node)?);
table.set_ty(node, kind);
Ok(())
}
type CatResult<T> = Result<T, Error>;
pub enum Error {
NoSource,
BadMeta(Meta),
Recursive(Handle),
TypeEval(TypeEval),
}
impl From<TypeEval> for Error {
fn from(value: TypeEval) -> Self {
Error::TypeEval(value)
}
}

View File

@ -1,10 +1,10 @@
//! A [Handle] is an accessor for [Entries](Entry) in a [Table].
//! An [Entry] is an accessor for [nodes](Handle) in a [Table].
//!
//! There are two kinds of handle:
//! - [Handle]: Provides getters for an entry's fields, and an implementation of
//! There are two kinds of entry:
//! - [Entry]: Provides getters for an entry's fields, and an implementation of
//! [Display](std::fmt::Display)
//! - [HandleMut]: Provides setters for an entry's fields, and an [`as_ref`](HandleMut::as_ref)
//! method to demote to a [Handle].
//! - [EntryMut]: Provides setters for an entry's fields, and an [`as_ref`](EntryMut::as_ref) method
//! to demote to an [Entry].
use std::collections::HashMap;
@ -14,11 +14,13 @@ use cl_structures::span::Span;
use crate::{
handle::Handle,
source::Source,
stage::categorize as cat,
table::{NodeKind, Table},
type_expression::{self as tex, TypeExpression},
type_kind::TypeKind,
};
pub mod display;
mod display;
impl Handle {
pub const fn to_entry<'t, 'a>(self, table: &'t Table<'a>) -> Entry<'t, 'a> {
@ -48,11 +50,11 @@ impl<'t, 'a> Entry<'t, 'a> {
self.table
}
pub const fn with_id(&self, id: Handle) -> Entry<'t, 'a> {
pub const fn with_id(&self, id: Handle) -> Entry<'_, 'a> {
Self { table: self.table, id }
}
pub fn nav(&self, path: &[PathPart]) -> Option<Entry<'t, 'a>> {
pub fn nav(&self, path: &[PathPart]) -> Option<Entry<'_, 'a>> {
Some(Entry { id: self.table.nav(self.id, path)?, table: self.table })
}
@ -64,8 +66,8 @@ impl<'t, 'a> Entry<'t, 'a> {
self.table.kind(self.id)
}
pub fn parent(&self) -> Option<&Handle> {
self.table.parent(self.id)
pub fn parent(&self) -> Option<Entry<'_, 'a>> {
Some(Entry { id: *self.table.parent(self.id)?, ..*self })
}
pub fn children(&self) -> Option<&HashMap<Sym, Handle>> {
@ -92,12 +94,12 @@ impl<'t, 'a> Entry<'t, 'a> {
self.table.source(self.id)
}
pub fn impl_target(&self) -> Option<Handle> {
self.table.impl_target(self.id)
pub fn impl_target(&self) -> Option<Entry<'_, 'a>> {
Some(Entry { id: self.table.impl_target(self.id)?, ..*self })
}
pub fn selfty(&self) -> Option<Handle> {
self.table.selfty(self.id)
pub fn selfty(&self) -> Option<Entry<'_, 'a>> {
Some(Entry { id: self.table.selfty(self.id)?, ..*self })
}
pub fn name(&self) -> Option<Sym> {
@ -124,7 +126,17 @@ impl<'t, 'a> EntryMut<'t, 'a> {
self.id
}
/// Constructs a new Handle with the provided parent [DefID]
/// Evaluates a [TypeExpression] in this entry's context
pub fn evaluate<Out>(&mut self, ty: &impl TypeExpression<Out>) -> Result<Out, tex::Error> {
let Self { table, id } = self;
ty.evaluate(table, *id)
}
pub fn categorize(&mut self) -> Result<(), cat::Error> {
cat::categorize(self.table, self.id)
}
/// Constructs a new Handle with the provided parent [Handle]
pub fn with_id(&mut self, parent: Handle) -> EntryMut<'_, 'a> {
EntryMut { table: self.table, id: parent }
}

View File

@ -12,29 +12,29 @@ fn write_name_or(h: Entry, f: &mut impl Write) -> fmt::Result {
impl fmt::Display for Entry<'_, '_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if self.kind().is_none() {
let Some(&kind) = self.kind() else {
return write!(f, "<invalid type: {}>", self.id);
}
};
if let Some(ty) = self.ty() {
match ty {
TypeKind::Alias(id) => write!(f, "= {}", self.with_id(*id))?,
TypeKind::Intrinsic(kind) => write!(f, "{kind}")?,
TypeKind::Adt(adt) => write_adt(adt, self, f)?,
TypeKind::Instance(id) => write!(f, "{}", self.with_id(*id)),
TypeKind::Intrinsic(kind) => write!(f, "{kind}"),
TypeKind::Adt(adt) => write_adt(adt, self, f),
&TypeKind::Ref(cnt, id) => {
for _ in 0..cnt {
f.write_str("&")?;
}
let h_id = self.with_id(id);
write_name_or(h_id, f)?;
write_name_or(h_id, f)
}
TypeKind::Slice(id) => {
write_name_or(self.with_id(*id), &mut f.delimit_with("[", "]"))?;
write_name_or(self.with_id(*id), &mut f.delimit_with("[", "]"))
}
&TypeKind::Array(t, cnt) => {
let mut f = f.delimit_with("[", "]");
write_name_or(self.with_id(t), &mut f)?;
write!(f, "; {cnt}")?;
write!(f, "; {cnt}")
}
TypeKind::Tuple(ids) => {
let mut f = f.delimit_with("(", ")");
@ -44,18 +44,19 @@ impl fmt::Display for Entry<'_, '_> {
}
write_name_or(self.with_id(id), &mut f)?;
}
Ok(())
}
TypeKind::FnSig { args, rety } => {
write!(f, "fn {} -> ", self.with_id(*args))?;
write_name_or(self.with_id(*rety), f)?;
write_name_or(self.with_id(*rety), f)
}
TypeKind::Empty => write!(f, "()")?,
TypeKind::Never => write!(f, "!")?,
TypeKind::Module => write!(f, "module?")?,
TypeKind::Empty => write!(f, "()"),
TypeKind::Never => write!(f, "!"),
TypeKind::Module => write!(f, "module?"),
}
} else {
write!(f, "{kind}")
}
Ok(())
}
}
@ -67,31 +68,23 @@ fn write_adt(adt: &Adt, h: &Entry, f: &mut impl Write) -> fmt::Result {
variants.next().map(|(name, def)| {
move |f: &mut Delimit<_>| match def {
Some(def) => {
write!(f, "\n{name}: ")?;
write!(f, "{name}: ")?;
write_name_or(h.with_id(*def), f)
}
None => write!(f, "\n{name}"),
None => write!(f, "{name}"),
}
})
})(f.delimit_with("enum {", "\n}"))
})(f.delimit_with("enum {", "}"))
}
Adt::CLikeEnum(variants) => {
let mut variants = variants.iter();
separate(",", || {
let (name, descrim) = variants.next()?;
Some(move |f: &mut Delimit<_>| write!(f, "\n{name} = {descrim}"))
})(f.delimit_with("enum {", "\n}"))
}
Adt::FieldlessEnum => write!(f, "enum"),
Adt::Struct(members) => {
let mut members = members.iter();
separate(", ", || {
let (name, vis, id) = members.next()?;
Some(move |f: &mut Delimit<_>| {
write!(f, "\n{vis}{name}: ")?;
write!(f, "{vis}{name}: ")?;
write_name_or(h.with_id(*id), f)
})
})(f.delimit_with("struct {", "\n}"))
})(f.delimit_with("struct {", "}"))
}
Adt::TupleStruct(members) => {
let mut members = members.iter();

View File

@ -1,8 +1,10 @@
//! A [Handle] uniquely represents an entry in the [Table](crate::table::Table)
use cl_structures::index_map::*;
// define the index types
make_index! {
/// Uniquely represents an entry in the [item context](crate::sym_table)
/// Uniquely represents an entry in the [Table](crate::table::Table)
Handle,
}

View File

@ -4,71 +4,28 @@
//!
//! This crate is a major work-in-progress.
//!
//! # The [Project](project::Project)™
//! Contains [item definitions](definition) and type expression information.
//! # The [Table](table::Table)™
//! A directed graph of nodes and their dependencies.
//!
//! *Every* definition is itself a module, and can contain arbitrarily nested items
//! as part of the [Module](module::Module) tree.
//! Contains [item definitions](handle) and [type expression](type_expression) information.
//!
//! The Project keeps track of a *global intern pool* of definitions, which are
//! trivially comparable by [DefID](key::DefID). Note that, for item definitions,
//! identical types in different modules DO NOT COMPARE EQUAL under this constraint.
//! However, so-called "anonymous" types *do not* follow this rule, as their
//! definitions are constructed dynamically and ensured to be unique.
// Note: it's a class invariant that named types are not added
// to the anon-types list. Please keep it that way. ♥ Thanks!
//! *Every* item is itself a module, and can contain arbitrarily nested items
//! as part of the item graph
//!
//! The table, additionally, has some queues for use in external algorithms,
//! detailed in the [stage] module.
//!
//! # Namespaces
//! Within a Project, [definitions](definition::Def) are classified into two namespaces:
//!
//! ## Type Namespace:
//! - Modules
//! - Structs
//! - Enums
//! - Type aliases
//!
//! ## Value Namespace:
//! - Functions
//! - Constants
//! - Static variables
//!
//! There is a *key* distinction between the two namespaces when it comes to
//! [Path](path::Path) traversal: Only items in the Type Namespace will be considered
//! as an intermediate path target. This means items in the Value namespace are
//! entirely *opaque*, and form a one-way barrier. Items outside a Value can be
//! referred to within the Value, but items inside a Value *cannot* be referred to
//! outside the Value.
//! Each item in the graph is given its own namespace, which is further separated into
//! two distinct parts:
//! - Children of an item are direct descendents (i.e. their `parent` is a handle to the item)
//! - Imports of an item are indirect descendents created by `use` or `impl` directives. They are
//! shadowed by Children with the same name.
//!
//! # Order of operations:
//! Currently, the process of type resolution goes as follows:
//!
//! 1. Traverse the AST, [collecting all Items into item definitions](name_collector)
//! 2. Eagerly [resolve `use` imports](use_importer)
//! 3. Traverse all [definitions](definition::Def), and [resolve the types for every
//! item](type_resolver)
//! 4. TODO: Construct a typed AST for expressions, and type-check them
//! For order-of-operations information, see the [stage] module.
#![warn(clippy::all)]
/*
How do I flesh out modules in an incremental way?
1. Visit all *modules* and create nodes in a module tree for them
- This can be done by holding mutable references to submodules!
Module:
values: Map(name -> Value),
types: Map(name -> Type),
Value: Either
function: { signature: Type, body: FunctionBody }
static: { Mutability, ty: Type, init: ConstEvaluationResult }
const: { ty: Type, init: ConstEvaluationResult }
*/
pub mod inference;
pub(crate) mod format_utils;
pub mod table;
@ -83,75 +40,35 @@ pub mod type_kind;
pub mod type_expression;
pub mod stage {
//! Type collection, evaluation, checking, and inference passes.
//!
//! # Order of operations
//! 1. [mod@populate]: Populate the graph with nodes for every named item.
//! 2. [mod@import]: Import the `use` nodes discovered in [Stage 1](populate).
//! 3. [mod@categorize]: Categorize the nodes according to textual type information.
//! - Creates anonymous types (`fn(T) -> U`, `&T`, `[T]`, etc.) as necessary to fill in the
//! type graph
//! - Creates a new struct type for every enum struct-variant.
//! 4. [mod@implement]: Import members of implementation modules into types.
pub use populate::Populator;
/// Stage 1: Populate the graph with nodes.
pub mod populate;
pub use import::import;
/// Stage 2: Import the `use` nodes discovered in Stage 1.
pub mod import;
pub use categorize::categorize;
/// Stage 3: Categorize the nodes according to textual type information.
pub mod categorize;
/*
pub use implement::implement;
/// Stage 4: Import members of `impl` blocks into their corresponding types.
pub mod implement;
LET THERE BE NOTES:
/// What is an inference rule?
/// An inference rule is a specification with a set of predicates and a judgement
/// Let's give every type an ID
struct TypeID(usize);
/// Let's give every type some data:
struct TypeDef<'def> {
name: String,
definition: &'def Item,
// TODO: Make type inference stage 5
// TODO: Use the type information stored in the [table]
pub mod infer;
}
and store them in a big vector of type descriptions:
struct TypeMap<'def> {
types: Vec<TypeDef<'def>>,
}
// todo: insertion of a type should yield a TypeID
// todo: impl index with TypeID
Let's store type information as either a concrete type or a generic type:
/// The Type struct represents all valid types, and can be trivially equality-compared
pub struct Type {
/// You can only have a pointer chain 65535 pointers long.
ref_depth: u16,
kind: TKind,
}
pub enum TKind {
Concrete(TypeID),
Generic(usize),
}
And assume I can specify a rule based on its inputs and outputs:
Rule {
operation: If,
/// The inputs field is populated by
inputs: [Concrete(BOOL), Generic(0), Generic(0)],
outputs: Generic(0),
/// This rule is compiler-intrinsic!
through: None,
}
Rule {
operation: Add,
inputs: [Concrete(I32), Concrete(I32)],
outputs: Concrete(I32),
/// This rule is not compiler-intrinsic (it is overloaded!)
through: Some(&ImplAddForI32::Add),
}
These rules can be stored in some kind of rule database:
let rules: Hashmap<Operation, Vec<Rule>> {
}
*/

View File

@ -1,376 +0,0 @@
//! A [Project] contains a tree of [Def]initions, referred to by their [Path]
use crate::{
definition::{Def, DefKind, TypeKind},
handle::DefID,
module,
node::{Node, NodeSource},
path::Path,
};
use cl_ast::PathPart;
use cl_structures::index_map::IndexMap;
use std::{
collections::HashMap,
ops::{Index, IndexMut},
};
use self::evaluate::EvaluableTypeExpression;
#[derive(Clone, Debug)]
pub struct Project<'a> {
pub pool: IndexMap<DefID, Def<'a>>,
/// Stores anonymous tuples, function pointer types, etc.
pub anon_types: HashMap<TypeKind, DefID>,
pub root: DefID,
}
impl Project<'_> {
pub fn new() -> Self {
Self::default()
}
}
impl Default for Project<'_> {
fn default() -> Self {
const ROOT_PATH: cl_ast::Path = cl_ast::Path { absolute: true, parts: Vec::new() };
let mut pool = IndexMap::default();
let root = pool.insert(Def {
module: Default::default(),
kind: DefKind::Type(TypeKind::Module),
node: Node::new(ROOT_PATH, Some(NodeSource::Root)),
});
let never = pool.insert(Def {
module: module::Module::new(root),
kind: DefKind::Type(TypeKind::Never),
node: Node::new(ROOT_PATH, None),
});
let empty = pool.insert(Def {
module: module::Module::new(root),
kind: DefKind::Type(TypeKind::Empty),
node: Node::new(ROOT_PATH, None),
});
let mut anon_types = HashMap::new();
anon_types.insert(TypeKind::Empty, empty);
anon_types.insert(TypeKind::Never, never);
Self { pool, root, anon_types }
}
}
impl<'a> Project<'a> {
pub fn parent_of(&self, module: DefID) -> Option<DefID> {
self[module].module.parent
}
pub fn root_of(&self, module: DefID) -> DefID {
match self.parent_of(module) {
Some(module) => self.root_of(module),
None => module,
}
}
/// Returns the DefID of the Self type within the given DefID's context
pub fn selfty_of(&self, node: DefID) -> Option<DefID> {
match self[node].kind {
DefKind::Impl(id) => Some(id),
DefKind::Type(_) => Some(node),
_ => self.selfty_of(self.parent_of(node)?),
}
}
pub fn get<'p>(
&self,
path: Path<'p>,
within: DefID,
) -> Option<(Option<DefID>, Option<DefID>, Path<'p>)> {
if path.absolute {
return self.get(path.relative(), self.root_of(within));
}
match path.as_ref() {
[PathPart::SuperKw, ..] => self.get(path.pop_front()?, self.parent_of(within)?),
[PathPart::SelfTy, ..] => self.get(path.pop_front()?, self.selfty_of(within)?),
[PathPart::SelfKw, ..] => self.get(path.pop_front()?, within),
[PathPart::Ident(name)] => {
let (ty, val) = self[within].module.get(*name);
// Transparent nodes can be looked through in reverse
if self[within].is_transparent() {
let lookback = self.parent_of(within).and_then(|p| self.get(path, p));
if let Some((subty, subval, path)) = lookback {
return Some((ty.or(subty), val.or(subval), path));
}
}
Some((ty, val, path.pop_front()?))
}
[PathPart::Ident(name), ..] => {
// TODO: This is currently too permissive, and treats undecided nodes as if they're
// always transparent, among other issues.
let (tysub, _, _) = match self[within].is_transparent() {
true => self.get(path.front()?, within)?,
false => (None, None, path),
};
let ty = self[within].module.get_type(*name).or(tysub)?;
self.get(path.pop_front()?, ty)
}
[] => Some((Some(within), None, path)),
}
}
/// Resolves a path within a module tree, finding the innermost module.
/// Returns the remaining path parts.
pub fn get_type<'p>(&self, path: Path<'p>, within: DefID) -> Option<(DefID, Path<'p>)> {
if path.absolute {
self.get_type(path.relative(), self.root_of(within))
} else if let Some(front) = path.first() {
let module = &self[within].module;
match front {
PathPart::SelfKw => self.get_type(path.pop_front()?, within),
PathPart::SuperKw => self.get_type(path.pop_front()?, module.parent?),
PathPart::SelfTy => self.get_type(path.pop_front()?, self.selfty_of(within)?),
PathPart::Ident(name) => match module.types.get(name) {
Some(&submodule) => self.get_type(path.pop_front()?, submodule),
None => Some((within, path)),
},
}
} else {
Some((within, path))
}
}
/// Inserts the type returned by the provided closure iff the TypeKind doesn't already exist
///
/// Assumes `kind` uniquely identifies the type!
pub fn insert_anonymous_type(
&mut self,
kind: TypeKind,
def: impl FnOnce() -> Def<'a>,
) -> DefID {
*(self
.anon_types
.entry(kind)
.or_insert_with(|| self.pool.insert(def())))
}
pub fn evaluate<T>(&mut self, expr: &T, parent: DefID) -> Result<T::Out, String>
where T: EvaluableTypeExpression {
expr.evaluate(self, parent)
}
}
impl<'a> Index<DefID> for Project<'a> {
type Output = Def<'a>;
fn index(&self, index: DefID) -> &Self::Output {
&self.pool[index]
}
}
impl IndexMut<DefID> for Project<'_> {
fn index_mut(&mut self, index: DefID) -> &mut Self::Output {
&mut self.pool[index]
}
}
pub mod evaluate {
//! An [EvaluableTypeExpression] is a component of a type expression tree
//! or an intermediate result of expression evaluation.
use super::*;
use crate::module;
use cl_ast::{Sym, Ty, TyArray, TyFn, TyKind, TyRef, TySlice, TyTuple};
/// Things that can be evaluated as a type expression
pub trait EvaluableTypeExpression {
/// The result of type expression evaluation
type Out;
fn evaluate(&self, prj: &mut Project, parent: DefID) -> Result<Self::Out, String>;
}
impl EvaluableTypeExpression for Ty {
type Out = DefID;
fn evaluate(&self, prj: &mut Project, id: DefID) -> Result<DefID, String> {
self.kind.evaluate(prj, id)
}
}
impl EvaluableTypeExpression for TyKind {
type Out = DefID;
fn evaluate(&self, prj: &mut Project, parent: DefID) -> Result<DefID, String> {
let id = match self {
// TODO: reduce duplication here
TyKind::Never => prj.anon_types[&TypeKind::Never],
TyKind::Empty => prj.anon_types[&TypeKind::Empty],
// TyKind::Path must be looked up explicitly
TyKind::Path(path) => path.evaluate(prj, parent)?,
TyKind::Slice(slice) => slice.evaluate(prj, parent)?,
TyKind::Array(array) => array.evaluate(prj, parent)?,
TyKind::Tuple(tup) => tup.evaluate(prj, parent)?,
TyKind::Ref(tyref) => tyref.evaluate(prj, parent)?,
TyKind::Fn(tyfn) => tyfn.evaluate(prj, parent)?,
};
// println!("{self} => {id:?}");
Ok(id)
}
}
impl EvaluableTypeExpression for Sym {
type Out = DefID;
fn evaluate(&self, prj: &mut Project, parent: DefID) -> Result<Self::Out, String> {
prj[parent]
.module
.types
.get(self)
.copied()
.ok_or_else(|| format!("{self} is not a member of {:?}", prj[parent].name()))
}
}
impl EvaluableTypeExpression for TySlice {
type Out = DefID;
fn evaluate(&self, prj: &mut Project, parent: DefID) -> Result<Self::Out, String> {
let ty = self.ty.evaluate(prj, parent)?;
let root = prj.root;
let id = prj.insert_anonymous_type(TypeKind::Slice(ty), move || Def {
module: module::Module::new(root),
node: Node::new(Default::default(), None),
kind: DefKind::Type(TypeKind::Slice(ty)),
});
Ok(id)
}
}
impl EvaluableTypeExpression for TyArray {
type Out = DefID;
fn evaluate(&self, prj: &mut Project, parent: DefID) -> Result<Self::Out, String> {
let kind = TypeKind::Array(self.ty.evaluate(prj, parent)?, self.count);
let root = prj.root;
let id = prj.insert_anonymous_type(kind.clone(), move || Def {
module: module::Module::new(root),
node: Node::new(Default::default(), None),
kind: DefKind::Type(kind),
});
Ok(id)
}
}
impl EvaluableTypeExpression for TyTuple {
type Out = DefID;
fn evaluate(&self, prj: &mut Project, parent: DefID) -> Result<DefID, String> {
let types = self.types.evaluate(prj, parent)?;
let root = prj.root;
let id = prj.insert_anonymous_type(TypeKind::Tuple(types.clone()), move || Def {
module: module::Module::new(root),
node: Node::new(Default::default(), None),
kind: DefKind::Type(TypeKind::Tuple(types)),
});
Ok(id)
}
}
impl EvaluableTypeExpression for TyRef {
type Out = DefID;
fn evaluate(&self, prj: &mut Project, parent: DefID) -> Result<DefID, String> {
let TyRef { count, mutable: _, to } = self;
let to = to.evaluate(prj, parent)?;
let root = prj.root;
let id = prj.insert_anonymous_type(TypeKind::Ref(*count, to), move || Def {
module: module::Module::new(root),
node: Node::new(Default::default(), None),
kind: DefKind::Type(TypeKind::Ref(*count, to)),
});
Ok(id)
}
}
impl EvaluableTypeExpression for TyFn {
type Out = DefID;
fn evaluate(&self, prj: &mut Project, parent: DefID) -> Result<DefID, String> {
let TyFn { args, rety } = self;
let args = args.evaluate(prj, parent)?;
let rety = match rety {
Some(rety) => rety.evaluate(prj, parent)?,
_ => TyKind::Empty.evaluate(prj, parent)?,
};
let root = prj.root;
let id = prj.insert_anonymous_type(TypeKind::FnSig { args, rety }, || Def {
module: module::Module::new(root),
node: Node::new(Default::default(), None),
kind: DefKind::Type(TypeKind::FnSig { args, rety }),
});
Ok(id)
}
}
impl EvaluableTypeExpression for cl_ast::Path {
type Out = DefID;
fn evaluate(&self, prj: &mut Project, parent: DefID) -> Result<Self::Out, String> {
Path::from(self).evaluate(prj, parent)
}
}
impl EvaluableTypeExpression for PathPart {
type Out = DefID;
fn evaluate(&self, prj: &mut Project, parent: DefID) -> Result<Self::Out, String> {
match self {
PathPart::SuperKw => prj
.parent_of(parent)
.ok_or_else(|| "Attempt to get super of root".into()),
PathPart::SelfKw => Ok(parent),
PathPart::SelfTy => prj
.selfty_of(parent)
.ok_or_else(|| "Attempt to get Self outside a Self-able context".into()),
PathPart::Ident(name) => name.evaluate(prj, parent),
}
}
}
impl<'a> EvaluableTypeExpression for Path<'a> {
type Out = DefID;
fn evaluate(&self, prj: &mut Project, parent: DefID) -> Result<Self::Out, String> {
let (tid, vid, path) = prj.get(*self, parent).ok_or("Failed to traverse path")?;
if !path.is_empty() {
Err(format!("Could not traverse past boundary: {path}"))?;
}
match (tid, vid) {
(Some(ty), _) => Ok(ty),
(None, Some(val)) => Ok(val),
(None, None) => Err(format!("No type or value found at path {self}")),
}
}
}
impl<T: EvaluableTypeExpression> EvaluableTypeExpression for [T] {
type Out = Vec<T::Out>;
fn evaluate(&self, prj: &mut Project, parent: DefID) -> Result<Self::Out, String> {
let mut types = vec![];
for value in self {
types.push(value.evaluate(prj, parent)?)
}
Ok(types)
}
}
impl<T: EvaluableTypeExpression> EvaluableTypeExpression for Option<T> {
type Out = Option<T::Out>;
fn evaluate(&self, prj: &mut Project, parent: DefID) -> Result<Self::Out, String> {
Ok(match self {
Some(v) => Some(v.evaluate(prj, parent)?),
None => None,
})
}
}
impl<T: EvaluableTypeExpression> EvaluableTypeExpression for Box<T> {
type Out = T::Out;
fn evaluate(&self, prj: &mut Project, parent: DefID) -> Result<Self::Out, String> {
self.as_ref().evaluate(prj, parent)
}
}
}

View File

@ -37,12 +37,12 @@ impl<'a> Source<'a> {
}
}
/// Returns `true` if this [NodeSource] defines a named value
/// Returns `true` if this [Source] defines a named value
pub fn is_named_value(&self) -> bool {
matches!(self, Self::Const(_) | Self::Static(_) | Self::Function(_))
}
/// Returns `true` if this [NodeSource] defines a named type
/// Returns `true` if this [Source] defines a named type
pub fn is_named_type(&self) -> bool {
matches!(
self,
@ -50,17 +50,17 @@ impl<'a> Source<'a> {
)
}
/// Returns `true` if this [NodeSource] refers to a [Ty] with no name
/// Returns `true` if this [Source] refers to a [Ty] with no name
pub fn is_anon_type(&self) -> bool {
matches!(self, Self::Ty(_))
}
/// Returns `true` if this [NodeSource] refers to an [Impl] block
/// Returns `true` if this [Source] refers to an [Impl] block
pub fn is_impl(&self) -> bool {
matches!(self, Self::Impl(_))
}
/// Returns `true` if this [NodeSource] refers to a [Use] import
/// Returns `true` if this [Source] refers to a [Use] import
pub fn is_use_import(&self) -> bool {
matches!(self, Self::Use(_))
}

View File

@ -0,0 +1,229 @@
//! Categorizes an entry in a table according to its embedded type information
use crate::{
handle::Handle,
source::Source,
table::{NodeKind, Table},
type_expression::{Error as TypeEval, TypeExpression},
type_kind::{Adt, TypeKind},
};
use cl_ast::*;
/// Ensures a type entry exists for the provided handle in the table
pub fn categorize(table: &mut Table, node: Handle) -> CatResult<()> {
if let Some(meta) = table.meta(node) {
for meta @ Meta { name, kind } in meta {
if let ("intrinsic", MetaKind::Equals(Literal::String(s))) = (&**name, kind) {
let kind =
TypeKind::Intrinsic(s.parse().map_err(|_| Error::BadMeta(meta.clone()))?);
table.set_ty(node, kind);
return Ok(());
}
}
}
let Some(source) = table.source(node) else {
return Ok(());
};
match source {
Source::Root => Ok(()),
Source::Module(_) => Ok(()),
Source::Alias(a) => cat_alias(table, node, a),
Source::Enum(e) => cat_enum(table, node, e),
Source::Variant(_) => Ok(()),
Source::Struct(s) => cat_struct(table, node, s),
Source::Const(c) => cat_const(table, node, c),
Source::Static(s) => cat_static(table, node, s),
Source::Function(f) => cat_function(table, node, f),
Source::Local(l) => cat_local(table, node, l),
Source::Impl(i) => cat_impl(table, node, i),
Source::Use(_) => Ok(()),
Source::Ty(ty) => ty
.evaluate(table, node)
.map_err(|e| Error::TypeEval(e, " while categorizing a type"))
.map(drop),
}
}
fn parent(table: &Table, node: Handle) -> Handle {
table.parent(node).copied().unwrap_or(node)
}
fn cat_alias(table: &mut Table, node: Handle, a: &Alias) -> CatResult<()> {
let parent = parent(table, node);
let kind = match &a.from {
Some(ty) => TypeKind::Instance(
ty.evaluate(table, parent)
.map_err(|e| Error::TypeEval(e, " while categorizing an alias"))?,
),
None => TypeKind::Empty,
};
table.set_ty(node, kind);
Ok(())
}
fn cat_struct(table: &mut Table, node: Handle, s: &Struct) -> CatResult<()> {
let parent = parent(table, node);
let Struct { name: _, kind } = s;
let kind = match kind {
StructKind::Empty => TypeKind::Adt(Adt::UnitStruct),
StructKind::Tuple(types) => {
let mut out = vec![];
for ty in types {
out.push((Visibility::Public, ty.evaluate(table, parent)?))
}
TypeKind::Adt(Adt::TupleStruct(out))
}
StructKind::Struct(members) => {
let mut out = vec![];
for m in members {
out.push(cat_member(table, node, m)?)
}
TypeKind::Adt(Adt::Struct(out))
}
};
table.set_ty(node, kind);
Ok(())
}
fn cat_member(
table: &mut Table,
node: Handle,
m: &StructMember,
) -> CatResult<(Sym, Visibility, Handle)> {
let StructMember { vis, name, ty } = m;
Ok((*name, *vis, ty.evaluate(table, node)?))
}
fn cat_enum<'a>(table: &mut Table<'a>, node: Handle, e: &'a Enum) -> CatResult<()> {
let Enum { name: _, kind } = e;
let kind = match kind {
EnumKind::NoVariants => TypeKind::Adt(Adt::Enum(vec![])),
EnumKind::Variants(variants) => {
let mut out_vars = vec![];
for v in variants {
out_vars.push(cat_variant(table, node, v)?)
}
TypeKind::Adt(Adt::Enum(out_vars))
}
};
table.set_ty(node, kind);
Ok(())
}
fn cat_variant<'a>(
table: &mut Table<'a>,
node: Handle,
v: &'a Variant,
) -> CatResult<(Sym, Option<Handle>)> {
let parent = parent(table, node);
let Variant { name, kind } = v;
match kind {
VariantKind::Plain => Ok((*name, None)),
VariantKind::CLike(c) => todo!("enum-variant constant {c}"),
VariantKind::Tuple(ty) => {
let ty = ty
.evaluate(table, parent)
.map_err(|e| Error::TypeEval(e, " while categorizing a variant"))?;
Ok((*name, Some(ty)))
}
VariantKind::Struct(members) => {
let mut out = vec![];
for m in members {
out.push(cat_member(table, node, m)?)
}
let kind = TypeKind::Adt(Adt::Struct(out));
let mut h = node.to_entry_mut(table);
let mut variant = h.new_entry(NodeKind::Type);
variant.set_source(Source::Variant(v));
variant.set_ty(kind);
Ok((*name, Some(variant.id())))
}
}
}
fn cat_const(table: &mut Table, node: Handle, c: &Const) -> CatResult<()> {
let parent = parent(table, node);
let kind = TypeKind::Instance(
c.ty.evaluate(table, parent)
.map_err(|e| Error::TypeEval(e, " while categorizing a const"))?,
);
table.set_ty(node, kind);
Ok(())
}
fn cat_static(table: &mut Table, node: Handle, s: &Static) -> CatResult<()> {
let parent = parent(table, node);
let kind = TypeKind::Instance(
s.ty.evaluate(table, parent)
.map_err(|e| Error::TypeEval(e, " while categorizing a static"))?,
);
table.set_ty(node, kind);
Ok(())
}
fn cat_function(table: &mut Table, node: Handle, f: &Function) -> CatResult<()> {
let parent = parent(table, node);
let kind = TypeKind::Instance(
f.sign
.evaluate(table, parent)
.map_err(|e| Error::TypeEval(e, " while categorizing a function"))?,
);
table.set_ty(node, kind);
Ok(())
}
fn cat_local(table: &mut Table, node: Handle, l: &Let) -> CatResult<()> {
let parent = parent(table, node);
if let Some(ty) = &l.ty {
let kind = ty
.evaluate(table, parent)
.map_err(|e| Error::TypeEval(e, " while categorizing a let binding"))?;
table.set_ty(node, TypeKind::Instance(kind));
}
Ok(())
}
fn cat_impl(table: &mut Table, node: Handle, i: &Impl) -> CatResult<()> {
let parent = parent(table, node);
let Impl { target, body: _ } = i;
let target = match target {
ImplKind::Type(t) => t.evaluate(table, parent),
ImplKind::Trait { impl_trait: _, for_type: t } => t.evaluate(table, parent),
}?;
table.set_impl_target(node, target);
Ok(())
}
type CatResult<T> = Result<T, Error>;
#[derive(Clone, Debug)]
pub enum Error {
BadMeta(Meta),
Recursive(Handle),
TypeEval(TypeEval, &'static str),
}
impl From<TypeEval> for Error {
fn from(value: TypeEval) -> Self {
Error::TypeEval(value, "")
}
}
impl std::fmt::Display for Error {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Error::BadMeta(meta) => write!(f, "Unknown meta attribute: #[{meta}]"),
Error::Recursive(id) => {
write!(f, "Encountered recursive type without indirection: {id}")
}
Error::TypeEval(e, during) => write!(f, "{e}{during}"),
}
}
}

View File

@ -0,0 +1,23 @@
use crate::{handle::Handle, table::Table};
pub fn implement(table: &mut Table) -> Vec<Handle> {
let pending = std::mem::take(&mut table.impls);
let mut errors = vec![];
for node in pending {
if let Err(e) = impl_one(table, node) {
errors.push(e);
}
}
errors
}
pub fn impl_one(table: &mut Table, node: Handle) -> Result<(), Handle> {
let Some(target) = table.impl_target(node) else {
Err(node)?
};
let Table { children, imports, .. } = table;
if let Some(children) = children.get(&node) {
imports.entry(target).or_default().extend(children);
}
Ok(())
}

View File

@ -7,20 +7,32 @@ use crate::{
};
use cl_ast::{PathPart, Sym, Use, UseTree};
use core::slice;
use std::mem;
use std::{collections::HashSet, mem};
type Seen = HashSet<Handle>;
pub fn import<'a>(table: &mut Table<'a>) -> Vec<(Handle, Error<'a>)> {
let pending = mem::take(&mut table.uses);
let mut seen = Seen::new();
let mut failed = vec![];
for import in pending {
if let Err(e) = import_one(table, import) {
failed.push((import, e));
let Err(e) = import_one(table, import, &mut seen) else {
continue;
};
if let Error::NotFound(_, _) = e {
table.mark_use_item(import)
}
failed.push((import, e));
}
failed
}
fn import_one<'a>(table: &mut Table<'a>, item: Handle) -> UseResult<'a, ()> {
fn import_one<'a>(table: &mut Table<'a>, item: Handle, seen: &mut Seen) -> UseResult<'a, ()> {
if !seen.insert(item) {
return Ok(());
}
let Some(NodeKind::Use) = table.kind(item) else {
Err(Error::ItsNoUse)?
};
@ -35,8 +47,13 @@ fn import_one<'a>(table: &mut Table<'a>, item: Handle) -> UseResult<'a, ()> {
};
let Use { absolute, tree } = tree;
eprintln!("Resolving import {item}: {code}");
import_tree(table, if !absolute { dst } else { table.root() }, dst, tree)
import_tree(
table,
if !absolute { dst } else { table.root() },
dst,
tree,
seen,
)
}
fn import_tree<'a>(
@ -44,32 +61,48 @@ fn import_tree<'a>(
src: Handle,
dst: Handle,
tree: &UseTree,
seen: &mut Seen,
) -> UseResult<'a, ()> {
match tree {
UseTree::Tree(trees) => {
for tree in trees {
import_tree(table, src, dst, tree)?
}
Ok(())
}
UseTree::Tree(trees) => trees
.iter()
.try_for_each(|tree| import_tree(table, src, dst, tree, seen)),
UseTree::Path(part, rest) => {
let source = table
.nav(src, slice::from_ref(part))
.ok_or_else(|| Error::NotFound(src, part.clone()))?;
import_tree(table, source, dst, rest)
import_tree(table, source, dst, rest, seen)
}
UseTree::Alias(src_name, dst_name) => import_name(table, src, src_name, dst, dst_name),
UseTree::Name(src_name) => import_name(table, src, src_name, dst, src_name),
UseTree::Glob => import_glob(table, src, dst),
UseTree::Alias(src_name, dst_name) => {
import_name(table, src, src_name, dst, dst_name, seen)
}
UseTree::Name(src_name) => import_name(table, src, src_name, dst, src_name, seen),
UseTree::Glob => import_glob(table, src, dst, seen),
}
}
fn import_glob<'a>(table: &mut Table<'a>, src: Handle, dst: Handle) -> UseResult<'a, ()> {
fn import_glob<'a>(
table: &mut Table<'a>,
src: Handle,
dst: Handle,
seen: &mut Seen,
) -> UseResult<'a, ()> {
let Table { children, imports, .. } = table;
if let Some(children) = children.get(&src) {
// TODO: check for new imports clobbering existing imports
imports.entry(dst).or_default().extend(children);
if let Some(c) = children.get(&src) {
imports.entry(dst).or_default().extend(c)
}
import_deps(table, src, seen)?;
let Table { imports, .. } = table;
// Importing imports requires some extra work, since we can't `get_many_mut`
if let Some(i) = imports.get(&src) {
let uses: Vec<_> = i.iter().map(|(&k, &v)| (k, v)).collect();
imports.entry(dst).or_default().extend(uses);
}
Ok(())
}
@ -79,7 +112,9 @@ fn import_name<'a>(
src_name: &Sym,
dst: Handle,
dst_name: &Sym,
seen: &mut Seen,
) -> UseResult<'a, ()> {
import_deps(table, src, seen)?;
match table.get_by_sym(src, src_name) {
// TODO: check for new imports clobbering existing imports
Some(src_id) => table.add_import(dst, *dst_name, src_id),
@ -88,6 +123,17 @@ fn import_name<'a>(
Ok(())
}
/// Imports the dependencies of this node
fn import_deps<'a>(table: &mut Table<'a>, node: Handle, seen: &mut Seen) -> UseResult<'a, ()> {
if let Some(items) = table.use_items.get(&node) {
let out = items.clone();
for item in out {
import_one(table, item, seen)?;
}
}
Ok(())
}
pub type UseResult<'a, T> = Result<T, Error<'a>>;
#[derive(Debug)]

View File

@ -15,9 +15,9 @@ pub struct Populator<'t, 'a> {
impl<'t, 'a> Populator<'t, 'a> {
pub fn new(table: &'t mut Table<'a>) -> Self {
Self { inner: table.root_handle_mut(), name: None }
Self { inner: table.root_entry_mut(), name: None }
}
/// Constructs a new Populator with the provided parent DefID
/// Constructs a new Populator with the provided parent Handle
pub fn with_id(&mut self, parent: Handle) -> Populator<'_, 'a> {
Populator { inner: self.inner.with_id(parent), name: None }
}

View File

@ -1,4 +1,29 @@
//! Conlang's symbol table
//! The [Table] is a monolithic data structure representing everything the type checker
//! knows about a program.
//!
//! Individual nodes in the table can be queried using the [Entry] API ([Table::entry])
//! or modified using the [EntryMut] API ([Table::entry_mut]).
//!
//! # Contents of a "node"
//! Always present:
//! - [NodeKind]: Determines how this node will be treated during the [stages](crate::stage) of
//! compilation
//! - [Parent node](Handle): Arranges this node in the hierarchical graph structure
//!
//! Populated as needed:
//! - Children: An associative array of [names](Sym) to child nodes in the graph. Child nodes are
//! arranged in a *strict* tree structure, with no back edges
//! - Imports: An associative array of [names](Sym) to other nodes in the graph. Not all import
//! nodes are back edges, but all back edges *must be* import nodes.
//! - [Types](TypeKind): Contains type information populated through type checking and inference.
//! Nodes with unpopulated types may be considered type variables in the future.
//! - [Spans][span]: Positional information from the source text. See [cl_structures::span].
//! - [Metas](Meta): Metadata decorators. These may have an effect throughout the compiler.
//! - [Sources](Source): Pointers back into the AST, for future analysis.
//! - Impl Targets: Sparse mapping of `impl` nodes to their corresponding targets.
//! - etc.
//!
//! [span]: struct@Span
use crate::{
entry::{Entry, EntryMut},
@ -12,6 +37,10 @@ use std::collections::HashMap;
// TODO: Cycle detection external to this module
/// The table is a monolithic data structure representing everything the type checker
/// knows about a program.
///
/// See [module documentation](self).
#[derive(Debug)]
pub struct Table<'a> {
root: Handle,
@ -20,13 +49,16 @@ pub struct Table<'a> {
parents: IndexMap<Handle, Handle>,
pub(crate) children: HashMap<Handle, HashMap<Sym, Handle>>,
pub(crate) imports: HashMap<Handle, HashMap<Sym, Handle>>,
pub(crate) use_items: HashMap<Handle, Vec<Handle>>,
types: HashMap<Handle, TypeKind>,
spans: HashMap<Handle, Span>,
metas: HashMap<Handle, &'a [Meta]>,
sources: HashMap<Handle, Source<'a>>,
// code: HashMap<DefID, BasicBlock>, // TODO: lower sources
// code: HashMap<Handle, BasicBlock>, // TODO: lower sources
impl_targets: HashMap<Handle, Handle>,
anon_types: HashMap<TypeKind, Handle>,
// --- Queues for algorithms ---
pub(crate) impls: Vec<Handle>,
pub(crate) uses: Vec<Handle>,
}
@ -44,6 +76,7 @@ impl<'a> Table<'a> {
parents,
children: HashMap::new(),
imports: HashMap::new(),
use_items: HashMap::new(),
types: HashMap::new(),
spans: HashMap::new(),
metas: HashMap::new(),
@ -78,6 +111,8 @@ impl<'a> Table<'a> {
}
pub fn mark_use_item(&mut self, item: Handle) {
let parent = self.parents[item];
self.use_items.entry(parent).or_default().push(item);
self.uses.push(item);
}
@ -85,14 +120,18 @@ impl<'a> Table<'a> {
self.impls.push(item);
}
/// Returns handles to all nodes sequentially by [DefID]
pub fn debug_handle_iter(&self) -> impl Iterator<Item = Entry<'_, 'a>> {
pub fn handle_iter(&mut self) -> impl Iterator<Item = Handle> {
self.kinds.keys()
}
/// Returns handles to all nodes sequentially by [Entry]
pub fn debug_entry_iter(&self) -> impl Iterator<Item = Entry<'_, 'a>> {
self.kinds.keys().map(|key| key.to_entry(self))
}
/// Gets the [DefID] of an anonymous type with the provided [TypeKind].
/// Gets the [Handle] of an anonymous type with the provided [TypeKind].
/// If not already present, a new one is created.
pub fn anon_type(&mut self, kind: TypeKind) -> Handle {
pub(crate) fn anon_type(&mut self, kind: TypeKind) -> Handle {
if let Some(id) = self.anon_types.get(&kind) {
return *id;
}
@ -103,11 +142,11 @@ impl<'a> Table<'a> {
entry
}
pub const fn root_handle(&self) -> Entry<'_, 'a> {
pub const fn root_entry(&self) -> Entry<'_, 'a> {
self.root.to_entry(self)
}
pub fn root_handle_mut(&mut self) -> crate::entry::EntryMut<'_, 'a> {
pub fn root_entry_mut(&mut self) -> crate::entry::EntryMut<'_, 'a> {
self.root.to_entry_mut(self)
}

View File

@ -1,20 +1,17 @@
//! A [TypeKind] is a node in the [Table](crate::table::Table)'s type graph
use crate::handle::Handle;
use cl_ast::{Sym, Visibility};
use std::{fmt::Debug, str::FromStr};
mod display;
pub enum EntryKind {
Variable(Option<Handle>),
Operator(TypeKind),
}
/// A [TypeKind] represents an item
/// (a component of a [Project](crate::project::Project)).
/// (a component of a [Table](crate::table::Table))
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum TypeKind {
/// An alias for an already-defined type
Alias(Handle),
Instance(Handle),
/// A primitive type, built-in to the compiler
Intrinsic(Intrinsic),
/// A user-defined aromatic data type
@ -42,10 +39,6 @@ pub enum TypeKind {
pub enum Adt {
/// A union-like enum type
Enum(Vec<(Sym, Option<Handle>)>),
/// A C-like enum
CLikeEnum(Vec<(Sym, u128)>),
/// An enum with no fields, which can never be constructed
FieldlessEnum,
/// A structural product type with named members
Struct(Vec<(Sym, Visibility, Handle)>),

View File

@ -8,7 +8,7 @@ use std::fmt::{self, Display, Write};
impl Display for TypeKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
TypeKind::Alias(def) => write!(f, "alias to #{def}"),
TypeKind::Instance(def) => write!(f, "alias to #{def}"),
TypeKind::Intrinsic(i) => i.fmt(f),
TypeKind::Adt(a) => a.fmt(f),
TypeKind::Ref(cnt, def) => {
@ -47,14 +47,6 @@ impl Display for Adt {
})
})(f.delimit_with("enum {", "}"))
}
Adt::CLikeEnum(variants) => {
let mut variants = variants.iter();
separate(", ", || {
let (name, descrim) = variants.next()?;
Some(move |f: &mut Delimit<_>| write!(f, "{name} = {descrim}"))
})(f.delimit_with("enum {", "}"))
}
Adt::FieldlessEnum => write!(f, "enum"),
Adt::Struct(members) => {
let mut members = members.iter();
separate(", ", || {

View File

@ -1,336 +0,0 @@
//! Performs step 2 of type checking: Evaluating type definitions
use crate::{
definition::{Adt, Def, DefKind, TypeKind, ValueKind},
handle::DefID,
node::{Node, NodeSource},
project::{evaluate::EvaluableTypeExpression, Project as Prj},
};
use cl_ast::*;
/// Evaluate a single ID
pub fn resolve(prj: &mut Prj, id: DefID) -> Result<(), &'static str> {
let Def { node: Node { kind: Some(source), meta, .. }, kind: DefKind::Undecided, .. } = prj[id]
else {
return Ok(());
};
let kind = match &source {
NodeSource::Root => "root",
NodeSource::Alias(_) => "type",
NodeSource::Module(_) => "mod",
NodeSource::Enum(_) => "enum",
NodeSource::Variant(_) => "variant",
NodeSource::Struct(_) => "struct",
NodeSource::Const(_) => "const",
NodeSource::Static(_) => "static",
NodeSource::Function(_) => "fn",
NodeSource::Impl(_) => "impl",
NodeSource::Use(_) => "use",
NodeSource::Local(_) => "let",
NodeSource::Ty(_) => "ty",
};
let name = prj[id].name().unwrap_or("".into());
eprintln!("Resolver: \x1b[32mEvaluating\x1b[0m \"\x1b[36m{kind} {name}\x1b[0m\" (`{id:?}`)");
for Meta { name, kind } in meta {
if let ("intrinsic", MetaKind::Equals(Literal::String(s))) = (&**name, kind) {
prj[id].kind = DefKind::Type(TypeKind::Intrinsic(
s.parse().map_err(|_| "Failed to parse intrinsic")?,
));
}
}
if DefKind::Undecided == prj[id].kind {
prj[id].kind = source.resolve_type(prj, id)?;
}
eprintln!("\x1b[33m=> {}\x1b[0m", prj[id].kind);
Ok(())
}
/// Resolves a given node
pub trait TypeResolvable<'a> {
/// The return type upon success
type Out;
/// Resolves type expressions within this node
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str>;
}
impl<'a> TypeResolvable<'a> for NodeSource<'a> {
type Out = DefKind;
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
match self {
NodeSource::Root => Ok(DefKind::Type(TypeKind::Module)),
NodeSource::Module(v) => v.resolve_type(prj, id),
NodeSource::Alias(v) => v.resolve_type(prj, id),
NodeSource::Enum(v) => v.resolve_type(prj, id),
NodeSource::Variant(v) => v.resolve_type(prj, id),
NodeSource::Struct(v) => v.resolve_type(prj, id),
NodeSource::Const(v) => v.resolve_type(prj, id),
NodeSource::Static(v) => v.resolve_type(prj, id),
NodeSource::Function(v) => v.resolve_type(prj, id),
NodeSource::Local(v) => v.resolve_type(prj, id),
NodeSource::Impl(v) => v.resolve_type(prj, id),
NodeSource::Use(v) => v.resolve_type(prj, id),
NodeSource::Ty(v) => v.resolve_type(prj, id),
}
}
}
impl<'a> TypeResolvable<'a> for &'a Meta {
type Out = DefKind;
#[allow(unused_variables)]
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
let Meta { name, kind } = self;
match (name.as_ref(), kind) {
("intrinsic", MetaKind::Equals(Literal::String(intrinsic))) => Ok(DefKind::Type(
TypeKind::Intrinsic(intrinsic.parse().map_err(|_| "unknown intrinsic type")?),
)),
(_, MetaKind::Plain) => Ok(DefKind::Type(TypeKind::Intrinsic(
name.parse().map_err(|_| "Unknown intrinsic type")?,
))),
_ => Err("Unknown meta attribute"),
}
}
}
impl<'a> TypeResolvable<'a> for &'a Module {
type Out = DefKind;
#[allow(unused_variables)]
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
Ok(DefKind::Type(TypeKind::Module))
}
}
impl<'a> TypeResolvable<'a> for &'a Alias {
type Out = DefKind;
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
let parent = prj.parent_of(id).unwrap_or(id);
let alias = if let Some(ty) = &self.from {
Some(
ty.evaluate(prj, parent)
.or_else(|_| ty.evaluate(prj, id))
.map_err(|_| "Unresolved type in alias")?,
)
} else {
None
};
Ok(DefKind::Type(TypeKind::Alias(alias)))
}
}
impl<'a> TypeResolvable<'a> for &'a Enum {
type Out = DefKind;
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
let Enum { name: _, kind } = self;
let EnumKind::Variants(v) = kind else {
return Ok(DefKind::Type(TypeKind::Adt(Adt::FieldlessEnum)));
};
let mut fields = vec![];
for Variant { name, kind: _ } in v {
let id = prj[id].module.get_type(*name);
fields.push((*name, id))
}
Ok(DefKind::Type(TypeKind::Adt(Adt::Enum(fields))))
}
}
impl<'a> TypeResolvable<'a> for &'a Variant {
type Out = DefKind;
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
// Get the grandparent of this node, for name resolution
let parent = prj.parent_of(id).unwrap_or(id);
let grandparent = prj.parent_of(parent).unwrap_or(parent);
let Variant { name: _, kind } = self;
Ok(DefKind::Type(match kind {
VariantKind::Plain => return Ok(DefKind::Type(TypeKind::Empty)),
VariantKind::CLike(_) => return Ok(DefKind::Undecided),
VariantKind::Tuple(ty) => match &ty.kind {
TyKind::Empty => TypeKind::Tuple(vec![]),
TyKind::Tuple(TyTuple { types }) => {
TypeKind::Tuple(types.evaluate(prj, grandparent).map_err(|e| {
eprintln!("{e}");
""
})?)
}
_ => Err("Unexpected TyKind in tuple variant")?,
},
VariantKind::Struct(members) => {
TypeKind::Adt(Adt::Struct(members.resolve_type(prj, parent)?))
}
}))
}
}
impl<'a> TypeResolvable<'a> for &'a Struct {
type Out = DefKind;
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
let parent = prj.parent_of(id).unwrap_or(id);
let Struct { name: _, kind } = self;
Ok(match kind {
StructKind::Empty => DefKind::Type(TypeKind::Empty),
StructKind::Tuple(types) => DefKind::Type(TypeKind::Adt(Adt::TupleStruct({
let mut out = vec![];
for ty in types {
out.push((
Visibility::Public,
ty.evaluate(prj, parent)
.map_err(|_| "Unresolved type in tuple-struct member")?,
));
}
out
}))),
StructKind::Struct(members) => {
DefKind::Type(TypeKind::Adt(Adt::Struct(members.resolve_type(prj, id)?)))
}
})
}
}
impl<'a> TypeResolvable<'a> for &'a StructMember {
type Out = (Sym, Visibility, DefID);
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
let parent = prj.parent_of(id).unwrap_or(id);
let StructMember { name, vis, ty } = self;
let ty = ty
.evaluate(prj, parent)
.map_err(|_| "Invalid type while resolving StructMember")?;
Ok((*name, *vis, ty))
}
}
impl<'a> TypeResolvable<'a> for &'a Const {
type Out = DefKind;
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
let Const { ty, .. } = self;
let ty = ty
.evaluate(prj, id)
.map_err(|_| "Invalid type while resolving const")?;
Ok(DefKind::Value(ValueKind::Const(ty)))
}
}
impl<'a> TypeResolvable<'a> for &'a Static {
type Out = DefKind;
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
let parent = prj.parent_of(id).unwrap_or(id);
let Static { ty, .. } = self;
let ty = ty
.evaluate(prj, parent)
.map_err(|_| "Invalid type while resolving static")?;
Ok(DefKind::Value(ValueKind::Static(ty)))
}
}
impl<'a> TypeResolvable<'a> for &'a Function {
type Out = DefKind;
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
let parent = prj.parent_of(id).unwrap_or(id);
let Function { sign, .. } = self;
let sign = sign
.evaluate(prj, parent)
.map_err(|_| "Invalid type in function signature")?;
Ok(DefKind::Value(ValueKind::Fn(sign)))
}
}
impl<'a> TypeResolvable<'a> for &'a Let {
type Out = DefKind;
#[allow(unused)]
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
let Let { mutable, name, ty, init } = self;
Ok(DefKind::Undecided)
}
}
impl<'a> TypeResolvable<'a> for &'a Impl {
type Out = DefKind;
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
let parent = prj.parent_of(id).unwrap_or(id);
let target = match &self.target {
ImplKind::Type(t) => t.evaluate(prj, parent),
ImplKind::Trait { for_type, .. } => for_type.evaluate(prj, parent),
}
.map_err(|_| "Unresolved type in impl target")?;
match prj.pool.get_many_mut([id, target]) {
// TODO: Better error handling
Err(_) => Err(concat!(
file!(),
line!(),
column!(),
"id and target are same"
))?,
Ok([id, target]) => {
for (name, def) in &id.module.types {
target.module.insert_type(*name, *def);
}
for (name, def) in &id.module.values {
target.module.insert_value(*name, *def);
}
}
}
Ok(DefKind::Impl(target))
}
}
impl<'a> TypeResolvable<'a> for &'a Use {
type Out = DefKind;
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
todo!("Resolve types for {self} with ID {id} in {prj:?}")
}
}
impl<'a> TypeResolvable<'a> for &'a TyKind {
type Out = DefKind;
#[allow(unused)]
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
todo!()
}
}
impl<'a, T> TypeResolvable<'a> for &'a [T]
where &'a T: TypeResolvable<'a>
{
type Out = Vec<<&'a T as TypeResolvable<'a>>::Out>;
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
let mut members = vec![];
for member in self {
members.push(member.resolve_type(prj, id)?);
}
Ok(members)
}
}
impl<'a, T> TypeResolvable<'a> for Option<&'a T>
where &'a T: TypeResolvable<'a>
{
type Out = Option<<&'a T as TypeResolvable<'a>>::Out>;
fn resolve_type(self, prj: &mut Prj<'a>, id: DefID) -> Result<Self::Out, &'static str> {
match self {
Some(t) => Some(t.resolve_type(prj, id)).transpose(),
None => Ok(None),
}
}
}

View File

@ -1,125 +0,0 @@
//! WIP use-item importer. This performs eager import resolution on the AST
//!
//! # TODOs:
//! - [ ] Resolve imports using a graph traversal rather than linear iteration
//! - [ ] Separate imported items from natively declared items
//! - [ ] Separate the use-import pass from the project
//! - [ ] Report errors in a meaningful way
//! - [ ] Lazy import resolution using graph-edge traversal during name lookup?
//! - It doesn't seem to me like the imports in a given scope *can change*.
#![allow(unused)]
use std::fmt::format;
use cl_ast::*;
use crate::{
definition::{Def, DefKind},
handle::DefID,
node::NodeSource,
project::Project,
};
type UseResult = Result<(), String>;
impl<'a> Project<'a> {
pub fn resolve_imports(&mut self) -> UseResult {
for id in self.pool.keys() {
self.visit_def(id)?;
}
Ok(())
}
pub fn visit_def(&mut self, id: DefID) -> UseResult {
let Def { kind, node, module } = &self.pool[id];
if let (DefKind::Use(parent), Some(NodeSource::Use(u))) = (kind, node.kind) {
println!("Importing use item {u}");
self.visit_use(u, *parent);
}
Ok(())
}
pub fn visit_use(&mut self, u: &'a Use, parent: DefID) -> UseResult {
let Use { absolute, tree } = u;
self.visit_use_tree(tree, parent, if *absolute { self.root } else { parent })
}
pub fn visit_use_tree(&mut self, tree: &'a UseTree, parent: DefID, c: DefID) -> UseResult {
match tree {
UseTree::Tree(trees) => {
for tree in trees {
self.visit_use_tree(tree, parent, c)?;
}
}
UseTree::Path(part, rest) => {
let c = self.evaluate(part, c)?;
self.visit_use_tree(rest, parent, c)?;
}
UseTree::Name(name) => self.visit_use_leaf(name, parent, c)?,
UseTree::Alias(from, to) => self.visit_use_alias(from, to, parent, c)?,
UseTree::Glob => self.visit_use_glob(parent, c)?,
}
Ok(())
}
pub fn visit_use_path(&mut self) -> UseResult {
Ok(())
}
pub fn visit_use_leaf(&mut self, name: &'a Sym, parent: DefID, c: DefID) -> UseResult {
self.visit_use_alias(name, name, parent, c)
}
pub fn visit_use_alias(
&mut self,
from: &Sym,
name: &Sym,
parent: DefID,
c: DefID,
) -> UseResult {
let mut imported = false;
let c_mod = &self[c].module;
let (tid, vid) = (
c_mod.types.get(from).copied(),
c_mod.values.get(from).copied(),
);
let parent = &mut self[parent].module;
if let Some(tid) = tid {
parent.types.insert(*name, tid);
imported = true;
}
if let Some(vid) = vid {
parent.values.insert(*name, vid);
imported = true;
}
if imported {
Ok(())
} else {
Err(format!("Identifier {name} not found in module {c}"))
}
}
pub fn visit_use_glob(&mut self, parent: DefID, c: DefID) -> UseResult {
// Loop over all the items in c, and add them as items in the parent
if parent == c {
return Ok(());
}
let [parent, c] = self
.pool
.get_many_mut([parent, c])
.expect("parent and c are not the same");
for (k, v) in &c.module.types {
parent.module.types.entry(*k).or_insert(*v);
}
for (k, v) in &c.module.values {
parent.module.values.entry(*k).or_insert(*v);
}
Ok(())
}
}

View File

@ -62,3 +62,18 @@ fn if_else() -> i32 {
}
// block 4
}
mod horrible_imports {
mod foo {
use super::{bar::*, baz::*};
struct Foo(&Foo, &Bar)
}
mod bar {
use super::{foo::*, baz::*};
struct Bar(&Foo, &Baz)
}
mod baz {
use super::{foo::*, bar::*};
struct Baz(&Foo, &Bar)
}
}