Conlang v0.0.5: Pratternization

cl-token:
- Minimize data redundancy by consolidating TokenKind::Literal; TokenData::{String, Identifier}
- Rename Op to Punct

cl-ast:
- Remove ExprKind::{Member, Call} in favor of making them
'binary' operators
- Consolidate boxes (TODO: consolidate more boxes)
- Remove repetition vecs in favor of boxes (this may come with performance tradeoffs!)

cl-lexer:
- Reflect changes from cl-token

cl-interpret, cl-repl/src/examples:
- Reflect changes from cl-ast

cl-parser:
- Switch to Pratt parsing for expressions
  - TODO: Code cleanup
  - TODO: Use total ordering for Precedence instead of binding powers (that's what the binding powers are there for anyway)
- Switch functional parsers to take Punct instead of TokenKind
  - It's not like we need a `for`-separated list
- Remove `binary` macro. No longer needed with precedence climbing.
- Repurpose `operator` macro to produce both the operator and the respective Precedence
- Remove several of the smaller parser functions, since they've been consolidated into the larger `exprkind`
This commit is contained in:
2024-04-13 03:33:26 -05:00
parent 2c36ccc0cf
commit fc3cbbf450
11 changed files with 636 additions and 778 deletions

View File

@@ -5,6 +5,8 @@
//! meaningless to get a pointer to one, and would be undefined behavior to dereference a pointer to
//! one in any situation.
use std::borrow::Borrow;
use super::*;
use cl_ast::*;
/// A work-in-progress tree walk interpreter for Conlang
@@ -107,14 +109,18 @@ impl Interpret for Let {
}
}
impl Interpret for Expr {
#[inline]
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
let Self { extents: _, kind } = self;
match kind {
kind.interpret(env)
}
}
impl Interpret for ExprKind {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
match self {
ExprKind::Assign(v) => v.interpret(env),
ExprKind::Binary(v) => v.interpret(env),
ExprKind::Unary(v) => v.interpret(env),
ExprKind::Member(v) => v.interpret(env),
ExprKind::Call(v) => v.interpret(env),
ExprKind::Index(v) => v.interpret(env),
ExprKind::Path(v) => v.interpret(env),
ExprKind::Literal(v) => v.interpret(env),
@@ -136,9 +142,10 @@ impl Interpret for Expr {
}
impl Interpret for Assign {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
let Assign { head, op, tail } = self;
let Assign { kind: op, parts } = self;
let (head, tail) = parts.borrow();
// Resolve the head pattern
let head = match &head.kind {
let head = match &head {
ExprKind::Path(Path { parts, .. }) if parts.len() == 1 => {
match parts.last().expect("parts should not be empty") {
PathPart::SuperKw => Err(Error::NotAssignable)?,
@@ -146,8 +153,6 @@ impl Interpret for Assign {
PathPart::Ident(Identifier(s)) => s,
}
}
ExprKind::Member(_) => todo!("Member access assignment"),
ExprKind::Call(_) => todo!("Assignment to the result of a function call?"),
ExprKind::Index(_) => todo!("Assignment to an index operation"),
ExprKind::Path(_) => todo!("Path expression resolution (IMPORTANT)"),
ExprKind::Empty | ExprKind::Group(_) | ExprKind::Tuple(_) => {
@@ -193,106 +198,87 @@ impl Interpret for Assign {
}
impl Interpret for Binary {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
let Binary { head, tail } = self;
let mut head = head.interpret(env)?;
let Binary { kind, parts } = self;
let (head, tail) = parts.borrow();
let head = head.interpret(env)?;
// Short-circuiting ops
for (op, tail) in tail {
match op {
BinaryKind::LogAnd => {
if head.truthy()? {
head = tail.interpret(env)?;
continue;
}
return Ok(head); // Short circuiting
}
BinaryKind::LogOr => {
if !head.truthy()? {
head = tail.interpret(env)?;
continue;
}
return Ok(head); // Short circuiting
}
BinaryKind::LogXor => {
head = ConValue::Bool(head.truthy()? ^ tail.interpret(env)?.truthy()?);
continue;
}
_ => {}
match kind {
BinaryKind::LogAnd => {
return if head.truthy()? {
tail.interpret(env)
} else {
Ok(head)
}; // Short circuiting
}
let tail = tail.interpret(env)?;
head = match op {
BinaryKind::Mul => env.call("mul", &[head, tail]),
BinaryKind::Div => env.call("div", &[head, tail]),
BinaryKind::Rem => env.call("rem", &[head, tail]),
BinaryKind::Add => env.call("add", &[head, tail]),
BinaryKind::Sub => env.call("sub", &[head, tail]),
BinaryKind::Shl => env.call("shl", &[head, tail]),
BinaryKind::Shr => env.call("shr", &[head, tail]),
BinaryKind::BitAnd => env.call("and", &[head, tail]),
BinaryKind::BitOr => env.call("or", &[head, tail]),
BinaryKind::BitXor => env.call("xor", &[head, tail]),
BinaryKind::RangeExc => env.call("range_exc", &[head, tail]),
BinaryKind::RangeInc => env.call("range_inc", &[head, tail]),
BinaryKind::Lt => env.call("lt", &[head, tail]),
BinaryKind::LtEq => env.call("lt_eq", &[head, tail]),
BinaryKind::Equal => env.call("eq", &[head, tail]),
BinaryKind::NotEq => env.call("neq", &[head, tail]),
BinaryKind::GtEq => env.call("gt_eq", &[head, tail]),
BinaryKind::Gt => env.call("gt", &[head, tail]),
BinaryKind::Dot => todo!("search within a type's namespace!"),
_ => Ok(head),
}?;
BinaryKind::LogOr => {
return if !head.truthy()? {
tail.interpret(env)
} else {
Ok(head)
}; // Short circuiting
}
BinaryKind::LogXor => {
return Ok(ConValue::Bool(
head.truthy()? ^ tail.interpret(env)?.truthy()?,
));
}
_ => {}
}
let tail = tail.interpret(env)?;
match kind {
BinaryKind::Mul => env.call("mul", &[head, tail]),
BinaryKind::Div => env.call("div", &[head, tail]),
BinaryKind::Rem => env.call("rem", &[head, tail]),
BinaryKind::Add => env.call("add", &[head, tail]),
BinaryKind::Sub => env.call("sub", &[head, tail]),
BinaryKind::Shl => env.call("shl", &[head, tail]),
BinaryKind::Shr => env.call("shr", &[head, tail]),
BinaryKind::BitAnd => env.call("and", &[head, tail]),
BinaryKind::BitOr => env.call("or", &[head, tail]),
BinaryKind::BitXor => env.call("xor", &[head, tail]),
BinaryKind::RangeExc => env.call("range_exc", &[head, tail]),
BinaryKind::RangeInc => env.call("range_inc", &[head, tail]),
BinaryKind::Lt => env.call("lt", &[head, tail]),
BinaryKind::LtEq => env.call("lt_eq", &[head, tail]),
BinaryKind::Equal => env.call("eq", &[head, tail]),
BinaryKind::NotEq => env.call("neq", &[head, tail]),
BinaryKind::GtEq => env.call("gt_eq", &[head, tail]),
BinaryKind::Gt => env.call("gt", &[head, tail]),
BinaryKind::Dot => todo!("search within a type's namespace!"),
BinaryKind::Call => match tail {
ConValue::Empty => head.call(env, &[]),
ConValue::Tuple(args) => head.call(env, &args),
_ => Err(Error::TypeError),
},
_ => Ok(head),
}
Ok(head)
}
}
impl Interpret for Unary {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
let Unary { tail, ops } = self;
let mut operand = tail.interpret(env)?;
for op in ops.iter().rev() {
operand = match op {
UnaryKind::Deref => env.call("deref", &[operand])?,
UnaryKind::Neg => env.call("neg", &[operand])?,
UnaryKind::Not => env.call("not", &[operand])?,
UnaryKind::At => {
println!("{operand}");
operand
}
UnaryKind::Tilde => unimplemented!("Tilde operator"),
};
let Unary { kind, tail } = self;
let operand = tail.interpret(env)?;
match kind {
UnaryKind::Deref => env.call("deref", &[operand]),
UnaryKind::Neg => env.call("neg", &[operand]),
UnaryKind::Not => env.call("not", &[operand]),
UnaryKind::At => {
println!("{operand}");
Ok(operand)
}
UnaryKind::Tilde => unimplemented!("Tilde operator"),
}
Ok(operand)
}
}
impl Interpret for Member {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
todo!("Interpret member accesses in {env}")
}
}
impl Interpret for Call {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
let Self { callee, args } = self;
// evaluate the callee
let mut callee = callee.interpret(env)?;
for args in args {
let ConValue::Tuple(args) = args.interpret(env)? else {
Err(Error::TypeError)?
};
callee = callee.call(env, &args)?;
}
Ok(callee)
}
}
impl Interpret for Index {
fn interpret(&self, env: &mut Environment) -> IResult<ConValue> {
let Self { head, indices } = self;
let mut head = head.interpret(env)?;
for indices in indices {
let Indices { exprs } = indices;
for index in exprs {
head = head.index(&index.interpret(env)?)?;
}
for index in indices {
head = head.index(&index.interpret(env)?)?;
}
Ok(head)
}