Conlang: Implement functions 1.0 (Resolves #12)

- [x] Call syntax
- [x] Function declaration syntax
TODO:
- [ ] Any form of type checking
- [ ] Static variable resolution
- [ ] Closures, etc.
This commit is contained in:
John 2023-10-29 23:47:00 -05:00
parent f3306e7ba4
commit ee5dabb4f3
7 changed files with 587 additions and 200 deletions

View File

@ -1,12 +1,10 @@
// This is a Conlang file. Conlang is an expression-based language designed for maximum flexibility etc. etc. whatever
// This is a Conlang file.
// This is a function. It can be called with the call operator.
// The function called `main` is the program's entrypoint
fn main() {
let x = 100;
// An if expression is like the ternary conditional operator in C
let y = if x < 50 {
let y = if 10 < 50 {
"\u{1f988}"
} else {
"x"
@ -20,12 +18,16 @@ fn main() {
// If `while` does not `break`, fall through to the `else` expression
} else {
false
}
};
// The same is true of `for` expressions!
let w = for idx in 0..100 {
if idx > 2 * 2 {
break idx
}
} else {
12345
}
// TODO: decide how to do IO
};
// A block evaluates to its last expression,
// or Empty if there is none
(y, z, w) // (🦈, false, 5)
}

View File

@ -11,16 +11,26 @@ Identifier = IDENTIFIER ;
(* statement *)
Stmt = Fn | Let | Expr ';' ;
Let = "let" "mut"? Identifier (':' Type)? ('=' Expr)? ';' ;
Fn = "fn" Identifier Block ; (* TODO: params, return value*)
Fn = "fn" Identifier '(' Params? ')' Block ;
(* TODO: Type system *)
Params = (Param ',')* Param? ;
Param = Identifier (*':' Type *) ;
(* # Expressions *)
(* expression *)
Expr = Assign ;
Block = '{' Stmt* Expr? '}' ;
Group = '(' Expr? ')' ;
Primary = Identifier | Literal
| Block | Group | Branch ;
(* expression::call *)
Call = FnCall | Primary ;
FnCall = Primary ('(' Tuple? ')')? ;
(* expression::tuple *)
Group = '(' Tuple? ')' ;
Tuple = Expr (',' Expr)* ;
(* expression::math *)
Assign = Identifier (AssignOp Assign) | Compare ;
Compare = Range (CompareOp Range )* ;
@ -30,7 +40,7 @@ Bitwise = Shift (BitwiseOp Shift )* ;
Shift = Term (ShiftOp Term )* ;
Term = Factor (TermOp Factor )* ;
Factor = Unary (FactorOp Unary )* ;
Unary = (UnaryOp)* Primary ;
Unary = (UnaryOp)* Call ;
(* expression::math::operator *)
AssignOp = '=' | "+=" | "-=" | "*=" | "/=" |
@ -50,7 +60,7 @@ Branch = While | If | For | Break | Return | Continue ;
If = "if" Expr Block (Else)? ;
While = "while" Expr Block (Else)? ;
For = "for" Identifier "in" Expr Block (Else)? ;
Else = "else" Block ;
Else = "else" Expr ;
Break = "break" Expr ;
Return = "return" Expr ;
Continue = "continue" ;

View File

@ -14,8 +14,11 @@ pub mod preamble {
//! Common imports for working with the [ast](super)
pub use super::{
expression::{
self, control,
self,
call::*,
control,
math::{self, operator},
tuple::*,
},
literal,
statement::*,
@ -47,9 +50,10 @@ pub mod todo {
//! when an item is in progress, remove it from todo.
//!
//! # General TODOs:
//! - [ ] Implement support for storing items in the AST
//! - [x] Implement support for storing items in the AST
//! - [ ] Keep track of the source location of each node
//! - [ ] Implement paths
//! - [ ] Implement functions
//! - [x] Implement functions
//! - [ ] Implement structs
//! - [ ] Implement enums
//! - [ ] Implement implementation
@ -61,11 +65,6 @@ pub mod todo {
//! Path resolution will be vital to the implementation of structs, enums, impl blocks,
//! traits, modules, etc.
}
pub mod function {
//! Function support
//! - [ ] Add function declaration expression (returns a function)
//! - [ ] Add function call expression
}
pub mod structure {
//! Struct support
@ -148,7 +147,6 @@ pub mod statement {
//! [`Stmt`]` := `[`Let`](Stmt::Let)` | `[`Expr`](Stmt::Expr)
//! [`Let`](Stmt::Let)` := "let"` [`Identifier`] (`:` `Type`)? (`=` [`Expr`])? `;`
//! [`Expr`](Stmt::Expr)` := `[`Expr`] `;`
use crate::token::Token;
use super::{
expression::{Block, Expr},
@ -164,6 +162,10 @@ pub mod statement {
/// # Syntax
/// [`Let`](Stmt::Let) := `"let"` [`Identifier`] (`:` `Type`)? (`=` [`Expr`])? `;`
Let(Let),
/// Contains a function declaration
/// # Syntax
/// [`Fn`](Stmt::Fn) := `"fn"` [`Identifier`] `'('` [`Tuple`] `')'` [`Block`]
Fn(FnDecl),
/// Contains an expression statement
/// # Syntax
/// [`Expr`](Stmt::Expr) := [`Expr`] `;`
@ -181,13 +183,18 @@ pub mod statement {
pub init: Option<Expr>,
}
/// Contains a function declaration
/// # Syntax
/// [`FnDecl`] := `"fn"` [`Identifier`] `'('` [`Tuple`] `')'`
#[derive(Clone, Debug)]
pub struct Fn {
pub struct FnDecl {
pub name: Identifier,
pub args: (), // TODO: capture arguments
pub rety: Token,
pub args: Vec<Identifier>,
pub body: Block,
// TODO: Store type information
}
// TODO: Create closure, transmute fndecl into a name and closure
}
pub mod expression {
@ -237,14 +244,14 @@ pub mod expression {
/// [`Primary`]` := `[`IDENTIFIER`](Identifier)`
/// | `[`Literal`](literal::Literal)`
/// | `[`Block`]`
/// | `[`Group`]`
/// | `[`Group`](tuple::Group)`
/// | `[`Branch`](control::Flow)
#[derive(Clone, Debug)]
pub enum Primary {
Identifier(Identifier),
Literal(literal::Literal),
Block(Block),
Group(Group),
Group(tuple::Group),
Branch(control::Flow),
}
@ -257,15 +264,61 @@ pub mod expression {
pub expr: Option<Box<Expr>>,
}
/// Contains a Parenthesized Expression
pub mod call {
//! [Function](FnCall) and [Method](todo) Call Expressions
//!
//! # Syntax
//! [`Call`]` := `[`FnCall`]` | `[`Primary`]
//!
//! [`FnCall`]` := `[`Primary`]` (`[`Tuple`]`)*`
use super::{tuple::Tuple, Primary};
#[derive(Clone, Debug)]
pub enum Call {
/// Contains a [Function Call Expression](FnCall)
FnCall(FnCall),
/// Contains only a [Primary] expression
Primary(Primary),
}
/// Contains a Function Call Expression
#[derive(Clone, Debug)]
pub struct FnCall {
pub callee: Box<Primary>,
pub args: Vec<Tuple>,
}
}
pub mod tuple {
//! A [Tuple] expression contains an arbitrary number of sub-expressions
use super::Expr;
/// Contains a [Tuple], [`(Expr)`](Group::Single),
/// or [Empty](Group::Empty)
/// # Syntax
/// [`Group`] := `'('` [`Expr`]? `')'`
/// [`Group`]`:= '('(`[`Expr`]` | `[`Tuple`]`)?')'`
#[derive(Clone, Debug)]
pub enum Group {
Expr(Box<Expr>),
/// Contains a variety of elements
/// # Syntax
/// [`Group::Tuple`]`:= '('`[`Tuple`]`')'`
Tuple(Tuple),
/// Contains a single element
/// # Syntax
/// [`Group::Single`]`:= '('`[`Expr`]`')'`
Single(Box<Expr>),
/// Contains no elements
/// # Syntax
/// [`Group::Empty`]`:= '(' ')'`
Empty,
}
/// Contains a heterogeneous collection of sub-expressions
/// # Syntax
#[derive(Clone, Debug)]
pub struct Tuple {
pub elements: Vec<Expr>,
}
}
pub mod math {
//! # Arithmetic and Logical Expressions
//!
@ -299,7 +352,7 @@ pub mod expression {
//! [`Shift`][2]` := `[`Term`][2]` (`[`ShiftOp`][5]` `[`Term`][2]` )*` \
//! [`Term`][2]` := `[`Factor`][2]` (`[`TermOp`][5]` `[`Factor`][2]` )*` \
//! [`Factor`][2]` := `[`Unary`][1]` (`[`FactorOp`][5]` `[`Unary`][1]` )*` \
//! [`Unary`][1]` := (`[`UnaryOp`][4]`)* `[`Primary`]
//! [`Unary`][1]` := (`[`UnaryOp`][4]`)* `[`FnCall`][7]
//!
//! [1]: Operation::Unary
//! [2]: Operation::Binary
@ -307,7 +360,7 @@ pub mod expression {
//! [4]: operator::Unary
//! [5]: operator::Binary
//! [6]: operator::Assign
use super::*;
use super::{call::Call, *};
/// An Operation is a tree of [operands](Primary) and [operators](operator).
#[derive(Clone, Debug)]
@ -319,10 +372,10 @@ pub mod expression {
/// [`Operation`] ([`operator::Binary`] [`Operation`])*
Binary(Binary),
/// [`Unary`](Operation::Unary) := ([`operator::Unary`])*
/// [`Primary`](Operation::Primary)
/// [`Call`](Operation::Call)
Unary(Unary),
/// [`Primary`](Operation::Primary) := [`expression::Primary`]
Primary(Primary),
/// [`Call`](Operation::Call) := [`expression::call::Call`]
Call(Call),
}
/// [`Assign`] := [`Identifier`] [`operator::Assign`] [`Operation`] | [`Operation`]
@ -340,7 +393,7 @@ pub mod expression {
pub other: Vec<(operator::Binary, Operation)>,
}
/// [`Unary`] := ([`operator::Unary`])* [`Primary`](Operation::Primary)
/// [`Unary`] := ([`operator::Unary`])* [`Call`](Operation::Call)
#[derive(Clone, Debug)]
pub struct Unary {
pub operators: Vec<operator::Unary>,
@ -502,7 +555,7 @@ pub mod expression {
//! [`While`]` := "while" `[`Expr`]` `[`Block`]` `[`Else`]`?` \
//! [`If`]` := "if" `[`Expr`]` `[`Block`]` `[`Else`]`?` \
//! [`For`]` := "for" `[`Identifier`]` "in" `[`Expr`]` `[`Block`]` `[`Else`]`?` \
//! [`Else`]` := "else" `[`Block`] \
//! [`Else`]` := "else" `[`Expr`] \
//!
//! [`Break`]`  := "break" `[`Expr`] \
//! [`Return`]`  := "return" `[`Expr`] \
@ -607,7 +660,7 @@ pub mod expression {
/// Represents an [`else` block](control).
///
/// An [`else` block](Else) contains instructions to be executed if
/// An [`else` expression](Else) contains instructions to be executed if
/// the corresponding body refused to produce a value. In the case of
/// [`if` expressions](If), this happens if the condition fails.
/// In the case of loop ([`while`](While), [`for`](For))expressions,
@ -617,10 +670,10 @@ pub mod expression {
/// to something other than the Empty type, this block is mandatory.
///
/// # Syntax
/// [`Else`] := `"else"` [`Block`]
/// [`Else`] := `"else"` [`Expr`]
#[derive(Clone, Debug)]
pub struct Else {
pub block: Block,
pub expr: Box<Expr>,
}
/// Represents a [`continue` expression][control]
@ -650,10 +703,13 @@ pub mod expression {
}
pub mod visitor {
//! A [`Visitor`] visits every kind of node in the [Abstract Syntax Tree](super). Nodes,
//! conversely are [`Walkers`](Walk) for Visitors which return a [`Result<(), E>`](Result)
//! A [`Visitor`] visits every kind of node in the [Abstract Syntax Tree](super)
//!
//! This trait is mostly here to ensure that every branch of the tree is accounted for.
//!
//! Default implementations are provided for
use super::{
expression::{control::*, math::*, Block, *},
expression::{call::*, control::*, math::*, tuple::*, Block, *},
literal::*,
statement::*,
*,
@ -672,11 +728,14 @@ pub mod visitor {
fn visit_statement(&mut self, stmt: &Stmt) -> R {
match stmt {
Stmt::Let(stmt) => self.visit_let(stmt),
Stmt::Fn(function) => self.visit_fn_decl(function),
Stmt::Expr(expr) => self.visit_expr(expr),
}
}
/// Visit a [Let statement](Let)
fn visit_let(&mut self, stmt: &Let) -> R;
/// Visit a [Fn declaration](FnDecl)
fn visit_fn_decl(&mut self, function: &FnDecl) -> R;
/// Visit an [Expression](Expr)
fn visit_expr(&mut self, expr: &Expr) -> R {
@ -688,10 +747,22 @@ pub mod visitor {
/// Visit a [Group] expression
fn visit_group(&mut self, group: &Group) -> R {
match group {
Group::Expr(expr) => self.visit_expr(expr),
Group::Tuple(tuple) => self.visit_tuple(tuple),
Group::Single(expr) => self.visit_expr(expr),
Group::Empty => self.visit_empty(),
}
}
/// Visit a [Tuple] expression
fn visit_tuple(&mut self, tuple: &Tuple) -> R;
/// Visit a [Call] expression
fn visit_call(&mut self, call: &Call) -> R {
match call {
Call::FnCall(call) => self.visit_fn_call(call),
Call::Primary(primary) => self.visit_primary(primary),
}
}
/// Visit a [Function Call](FnCall) expression
fn visit_fn_call(&mut self, call: &FnCall) -> R;
// Math expression
/// Visit an [Operation]
@ -700,7 +771,7 @@ pub mod visitor {
Operation::Assign(assign) => self.visit_assign(assign),
Operation::Binary(binary) => self.visit_binary(binary),
Operation::Unary(unary) => self.visit_unary(unary),
Operation::Primary(primary) => self.visit_primary(primary),
Operation::Call(call) => self.visit_call(call),
}
}
/// Visit an [Assignment](Assign) operation

View File

@ -1,18 +1,36 @@
//! Interprets an AST as a program
use self::scope::Environment;
use crate::ast::preamble::*;
use error::{Error, IResult, Reason};
use error::{Error, IResult};
use scope::Environment;
use temp_type_impl::ConValue;
/// Callable types can be called from within a Conlang program
pub trait Callable: std::fmt::Debug {
/// Calls this [Callable] in the provided [Interpreter], with [ConValue] args \
/// The Callable is responsible for checking the argument count and validating types
fn call(&self, interpreter: &mut Interpreter, args: &[ConValue]) -> IResult<()>;
/// Returns the common name of this identifier.
fn name(&self) -> &str;
}
/// [BuiltIn]s are [Callable]s with bespoke definitions
pub trait BuiltIn: std::fmt::Debug + Callable {}
pub mod temp_type_impl {
//! Temporary implementations of Conlang values
use super::error::{Error, IResult, Reason};
//!
//! The most permanent fix is a temporary one.
use super::{
error::{Error, IResult},
function::Function,
BuiltIn, Callable, Interpreter,
};
use std::ops::*;
/// A Conlang value
///
/// This is a hack to work around the fact that Conlang doesn't have a functioning type system
/// yet :(
/// This is a hack to work around the fact that Conlang doesn't
/// have a functioning type system yet :(
#[derive(Clone, Debug, Default)]
pub enum ConValue {
/// The empty/unit `()` type
@ -26,28 +44,34 @@ pub mod temp_type_impl {
Char(char),
/// A string
String(String),
/// A tuple
Tuple(Vec<ConValue>),
/// An exclusive range
RangeExc(i128, i128),
/// An inclusive range
RangeInc(i128, i128),
/// A callable thing
Function(Function),
/// A built-in function
BuiltIn(&'static dyn BuiltIn),
}
impl ConValue {
/// Gets whether the current value is true or false
pub fn truthy(&self) -> IResult<bool> {
match self {
ConValue::Bool(v) => Ok(*v),
_ => Err(Error::with_reason(Reason::TypeError))?,
_ => Err(Error::TypeError)?,
}
}
pub fn range_exc(self, other: Self) -> IResult<Self> {
let (Self::Int(a), Self::Int(b)) = (self, other) else {
Err(Error::with_reason(Reason::TypeError))?
Err(Error::TypeError)?
};
Ok(Self::RangeExc(a, b.saturating_sub(1)))
}
pub fn range_inc(self, other: Self) -> IResult<Self> {
let (Self::Int(a), Self::Int(b)) = (self, other) else {
Err(Error::with_reason(Reason::TypeError))?
Err(Error::TypeError)?
};
Ok(Self::RangeInc(a, b))
}
@ -72,6 +96,23 @@ pub mod temp_type_impl {
sub_assign: -;
}
}
impl Callable for ConValue {
fn name(&self) -> &str {
match self {
ConValue::Function(func) => func.name(),
ConValue::BuiltIn(func) => func.name(),
_ => "",
}
}
fn call(&self, interpreter: &mut Interpreter, args: &[ConValue]) -> IResult<()> {
match self {
Self::Function(func) => func.call(interpreter, args),
Self::BuiltIn(func) => func.call(interpreter, args),
_ => Err(Error::NotCallable(self.clone())),
}
}
}
/// Templates comparison functions for [ConValue]
macro cmp ($($fn:ident: $empty:literal, $op:tt);*$(;)?) {$(
/// TODO: Remove when functions are implemented:
@ -83,7 +124,7 @@ pub mod temp_type_impl {
(Self::Bool(a), Self::Bool(b)) => Ok(Self::Bool(a $op b)),
(Self::Char(a), Self::Char(b)) => Ok(Self::Bool(a $op b)),
(Self::String(a), Self::String(b)) => Ok(Self::Bool(a $op b)),
_ => Err(Error::with_reason(Reason::TypeError))
_ => Err(Error::TypeError)
}
}
)*}
@ -105,12 +146,23 @@ pub mod temp_type_impl {
char => ConValue::Char,
&str => ConValue::String,
String => ConValue::String,
Function => ConValue::Function,
Vec<ConValue> => ConValue::Tuple,
}
impl From<()> for ConValue {
fn from(_: ()) -> Self {
Self::Empty
}
}
impl From<&[ConValue]> for ConValue {
fn from(value: &[ConValue]) -> Self {
match value.len() {
0 => Self::Empty,
1 => value[0].clone(),
_ => Self::Tuple(value.into()),
}
}
}
/// Implements binary [std::ops] traits for [ConValue]
///
@ -127,55 +179,55 @@ pub mod temp_type_impl {
(ConValue::Empty, ConValue::Empty) => ConValue::Empty,
(ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a + b),
(ConValue::String(a), ConValue::String(b)) => ConValue::String(a + &b),
_ => Err(Error::with_reason(Reason::TypeError))?
_ => Err(Error::TypeError)?
]
BitAnd: bitand = [
(ConValue::Empty, ConValue::Empty) => ConValue::Empty,
(ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a & b),
(ConValue::Bool(a), ConValue::Bool(b)) => ConValue::Bool(a & b),
_ => Err(Error::with_reason(Reason::TypeError))?
_ => Err(Error::TypeError)?
]
BitOr: bitor = [
(ConValue::Empty, ConValue::Empty) => ConValue::Empty,
(ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a | b),
(ConValue::Bool(a), ConValue::Bool(b)) => ConValue::Bool(a | b),
_ => Err(Error::with_reason(Reason::TypeError))?
_ => Err(Error::TypeError)?
]
BitXor: bitxor = [
(ConValue::Empty, ConValue::Empty) => ConValue::Empty,
(ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a ^ b),
(ConValue::Bool(a), ConValue::Bool(b)) => ConValue::Bool(a ^ b),
_ => Err(Error::with_reason(Reason::TypeError))?
_ => Err(Error::TypeError)?
]
Div: div = [
(ConValue::Empty, ConValue::Empty) => ConValue::Empty,
(ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a / b),
_ => Err(Error::with_reason(Reason::TypeError))?
_ => Err(Error::TypeError)?
]
Mul: mul = [
(ConValue::Empty, ConValue::Empty) => ConValue::Empty,
(ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a * b),
_ => Err(Error::with_reason(Reason::TypeError))?
_ => Err(Error::TypeError)?
]
Rem: rem = [
(ConValue::Empty, ConValue::Empty) => ConValue::Empty,
(ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a % b),
_ => Err(Error::with_reason(Reason::TypeError))?
_ => Err(Error::TypeError)?
]
Shl: shl = [
(ConValue::Empty, ConValue::Empty) => ConValue::Empty,
(ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a << b),
_ => Err(Error::with_reason(Reason::TypeError))?
_ => Err(Error::TypeError)?
]
Shr: shr = [
(ConValue::Empty, ConValue::Empty) => ConValue::Empty,
(ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a >> b),
_ => Err(Error::with_reason(Reason::TypeError))?
_ => Err(Error::TypeError)?
]
Sub: sub = [
(ConValue::Empty, ConValue::Empty) => ConValue::Empty,
(ConValue::Int(a), ConValue::Int(b)) => ConValue::Int(a - b),
_ => Err(Error::with_reason(Reason::TypeError))?
_ => Err(Error::TypeError)?
]
}
impl Neg for ConValue {
@ -184,7 +236,7 @@ pub mod temp_type_impl {
Ok(match self {
ConValue::Empty => ConValue::Empty,
ConValue::Int(v) => ConValue::Int(-v),
_ => Err(Error::with_reason(Reason::TypeError))?,
_ => Err(Error::TypeError)?,
})
}
}
@ -195,7 +247,7 @@ pub mod temp_type_impl {
ConValue::Empty => ConValue::Empty,
ConValue::Int(v) => ConValue::Int(!v),
ConValue::Bool(v) => ConValue::Bool(!v),
_ => Err(Error::with_reason(Reason::TypeError))?,
_ => Err(Error::TypeError)?,
})
}
}
@ -205,17 +257,33 @@ pub mod temp_type_impl {
ConValue::Empty => "Empty".fmt(f),
ConValue::Int(v) => v.fmt(f),
ConValue::Bool(v) => v.fmt(f),
ConValue::Char(v) => write!(f, "'{v}'"),
ConValue::String(v) => write!(f, "\"{v}\""),
ConValue::Char(v) => v.fmt(f),
ConValue::String(v) => v.fmt(f),
ConValue::RangeExc(a, b) => write!(f, "{a}..{}", b + 1),
ConValue::RangeInc(a, b) => write!(f, "{a}..={b}"),
ConValue::Tuple(tuple) => {
'('.fmt(f)?;
for (idx, element) in tuple.iter().enumerate() {
if idx > 0 {
", ".fmt(f)?
}
element.fmt(f)?
}
')'.fmt(f)
}
ConValue::Function(func) => {
write!(f, "fn {}", func.name())
}
ConValue::BuiltIn(func) => {
write!(f, "internal fn {}", func.name())
}
}
}
}
}
/// A work-in-progress tree walk interpreter for Conlang
#[derive(Clone, Debug, Default)]
#[derive(Clone, Debug)]
pub struct Interpreter {
scope: Box<Environment>,
stack: Vec<ConValue>,
@ -230,6 +298,13 @@ impl Interpreter {
pub fn interpret(&mut self, start: &Start) -> IResult<()> {
self.visit(start)
}
/// Calls a function inside the interpreter's scope,
/// and returns the result
pub fn call(&mut self, name: &str, args: &[ConValue]) -> IResult<ConValue> {
let function = self.resolve(name)?;
function.call(self, args)?;
self.pop()
}
/// Evaluates a single [Expression](expression::Expr) and returns the value stack.
pub fn eval(&mut self, expr: &expression::Expr) -> IResult<Vec<ConValue>> {
self.visit_expr(expr)?;
@ -239,24 +314,16 @@ impl Interpreter {
self.stack.push(value.into())
}
fn peek(&mut self) -> IResult<&ConValue> {
self.stack
.last()
.ok_or(Error::with_reason(Reason::StackUnderflow))
self.stack.last().ok_or(Error::StackUnderflow)
}
fn pop(&mut self) -> IResult<ConValue> {
self.stack
.pop()
.ok_or(Error::with_reason(Reason::StackUnderflow))
self.stack.pop().ok_or(Error::StackUnderflow)
}
fn pop_two(&mut self) -> IResult<(ConValue, ConValue)> {
Ok((self.pop()?, self.pop()?))
}
fn resolve(&mut self, value: &Identifier) -> IResult<ConValue> {
self.scope
.get(value)
.cloned()
.ok_or_else(|| Error::with_reason(Reason::NotDefined(value.to_owned())))?
.ok_or_else(|| Error::with_reason(Reason::NotInitialized(value.to_owned())))
fn resolve(&mut self, value: &str) -> IResult<ConValue> {
self.scope.get(value).cloned()
}
}
@ -271,6 +338,7 @@ impl Visitor<IResult<()>> for Interpreter {
fn visit_statement(&mut self, stmt: &Stmt) -> IResult<()> {
match stmt {
Stmt::Let(l) => self.visit_let(l),
Stmt::Fn(f) => self.visit_fn_decl(f),
Stmt::Expr(e) => {
self.visit_expr(e)?;
self.pop().map(drop)
@ -279,7 +347,7 @@ impl Visitor<IResult<()>> for Interpreter {
}
fn visit_let(&mut self, stmt: &Let) -> IResult<()> {
let Let { name, init, .. } = stmt;
let Let { name: Identifier(name), init, .. } = stmt;
if let Some(init) = init {
self.visit_expr(init)?;
let init = self.pop()?;
@ -290,6 +358,12 @@ impl Visitor<IResult<()>> for Interpreter {
Ok(())
}
fn visit_fn_decl(&mut self, function: &FnDecl) -> IResult<()> {
// register the function in the current environment
self.scope.insert_fn(function);
Ok(())
}
fn visit_block(&mut self, block: &expression::Block) -> IResult<()> {
for stmt in &block.statements {
self.visit_statement(stmt)?;
@ -302,14 +376,35 @@ impl Visitor<IResult<()>> for Interpreter {
}
}
fn visit_tuple(&mut self, tuple: &Tuple) -> IResult<()> {
let mut out = vec![];
for expr in &tuple.elements {
self.visit_expr(expr)?;
out.push(self.pop()?);
}
self.push(out);
Ok(())
}
fn visit_fn_call(&mut self, call: &FnCall) -> IResult<()> {
// evaluate the callee
self.visit_primary(&call.callee)?;
for args in &call.args {
self.visit_tuple(args)?;
let (ConValue::Tuple(args), callee) = self.pop_two()? else {
Err(Error::TypeError)?
};
callee.call(self, &args)?;
}
Ok(())
}
fn visit_assign(&mut self, assign: &math::Assign) -> IResult<()> {
use operator::Assign;
let math::Assign { target, operator, init } = assign;
self.visit_operation(init)?;
let init = self.pop()?;
let Some(resolved) = self.scope.get_mut(target) else {
Err(Error::with_reason(Reason::NotDefined(target.to_owned())))?
};
let resolved = self.scope.get_mut(&target.0)?;
if let Assign::Assign = operator {
use std::mem::discriminant as variant;
// runtime typecheck
@ -318,15 +413,13 @@ impl Visitor<IResult<()>> for Interpreter {
*value = init;
}
None => *resolved = Some(init),
_ => Err(Error::with_reason(Reason::TypeError))?,
_ => Err(Error::TypeError)?,
}
self.push(ConValue::Empty);
return Ok(());
}
let Some(target) = resolved.as_mut() else {
Err(Error::with_reason(Reason::NotInitialized(
target.to_owned(),
)))?
Err(Error::NotInitialized(target.0.to_owned()))?
};
match operator {
Assign::AddAssign => target.add_assign(init)?,
@ -463,13 +556,13 @@ impl Visitor<IResult<()>> for Interpreter {
self.pop()?;
continue;
};
match out.reason() {
Reason::Continue => continue,
Reason::Break(value) => {
match out {
Error::Continue => continue,
Error::Break(value) => {
self.push(value);
return Ok(());
}
r => Err(Error::with_reason(r))?,
r => Err(r)?,
}
}
if let Some(r#else) = &expr.else_ {
@ -485,21 +578,21 @@ impl Visitor<IResult<()>> for Interpreter {
self.visit_expr(&expr.iter)?;
let bounds = match self.pop()? {
ConValue::RangeExc(a, b) | ConValue::RangeInc(a, b) => (a, b),
_ => Err(Error::with_reason(Reason::NotIterable))?,
_ => Err(Error::NotIterable)?,
};
for loop_var in bounds.0..=bounds.1 {
self.scope.insert(&expr.var, Some(loop_var.into()));
self.scope.insert(&expr.var.0, Some(loop_var.into()));
let Err(out) = self.visit_block(&expr.body) else {
self.pop()?;
continue;
};
match out.reason() {
Reason::Continue => continue,
Reason::Break(value) => {
match out {
Error::Continue => continue,
Error::Break(value) => {
self.push(value);
return Ok(());
}
r => Err(Error::with_reason(r))?,
r => Err(r)?,
}
}
if let Some(r#else) = &expr.else_ {
@ -512,7 +605,7 @@ impl Visitor<IResult<()>> for Interpreter {
}
fn visit_else(&mut self, else_: &control::Else) -> IResult<()> {
self.visit_block(&else_.block)
self.visit_expr(&else_.expr)
}
fn visit_continue(&mut self, _: &control::Continue) -> IResult<()> {
@ -534,7 +627,7 @@ impl Visitor<IResult<()>> for Interpreter {
}
fn visit_identifier(&mut self, ident: &Identifier) -> IResult<()> {
let value = self.resolve(ident)?;
let value = self.resolve(&ident.0)?;
self.push(value);
Ok(())
}
@ -569,34 +662,139 @@ impl Visitor<IResult<()>> for Interpreter {
}
}
impl Default for Interpreter {
fn default() -> Self {
Self { scope: Environment::new().into(), stack: Default::default() }
}
}
pub mod function {
//! Represents a block of code which lives inside the Interpreter
use super::{Callable, ConValue, Error, FnDecl, IResult, Identifier, Interpreter};
use crate::ast::visitor::Visitor;
/// Represents a block of code which persists inside the Interpreter
#[derive(Clone, Debug)]
pub struct Function {
/// Stores the contents of the function declaration
declaration: Box<FnDecl>,
// /// Stores the enclosing scope of the function
// TODO: Capture variables
}
impl Function {
pub fn new(declaration: &FnDecl) -> Self {
Self { declaration: declaration.clone().into() }
}
}
impl Callable for Function {
fn name(&self) -> &str {
&self.declaration.name.0
}
fn call(&self, interpreter: &mut Interpreter, args: &[ConValue]) -> IResult<()> {
// Check arg mapping
if args.len() != self.declaration.args.len() {
return Err(Error::ArgNumber {
want: self.declaration.args.len(),
got: args.len(),
});
}
// TODO: Isolate cross-function scopes!
interpreter.scope.enter();
for (Identifier(arg), value) in self.declaration.args.iter().zip(args) {
interpreter.scope.insert(arg, Some(value.clone()));
}
match interpreter.visit_block(&self.declaration.body) {
Err(Error::Return(value)) => interpreter.push(value),
Err(Error::Break(value)) => Err(Error::BadBreak(value))?,
Err(e) => Err(e)?,
Ok(_) => (),
}
interpreter.scope.exit()?;
Ok(())
}
}
}
pub mod builtin {
mod builtin_imports {
pub use crate::interpreter::{
error::{Error, IResult},
temp_type_impl::ConValue,
BuiltIn, Callable, Interpreter,
};
}
use super::BuiltIn;
/// Builtins to load when a new interpreter is created
pub const DEFAULT_BUILTINS: &[&dyn BuiltIn] = &[&print::Print, &dbg::Dbg];
mod print {
//! Implements the unstable `print(...)` builtin
use super::builtin_imports::*;
/// Implements the `print(...)` builtin
#[derive(Clone, Debug)]
pub struct Print;
impl BuiltIn for Print {}
#[rustfmt::skip]
impl Callable for Print {
fn name(&self) -> &'static str { "print" }
fn call(&self, inter: &mut Interpreter, args: &[ConValue]) -> IResult<()> {
for arg in args { print!("{arg}") }
println!();
inter.push(ConValue::Empty);
Ok(())
}
}
}
mod dbg {
//! Implements the unstable `dbg(...)` builtin
use super::builtin_imports::*;
#[derive(Clone, Debug)]
pub struct Dbg;
impl BuiltIn for Dbg {}
#[rustfmt::skip]
impl Callable for Dbg {
fn name(&self) -> &str { "dbg" }
fn call(&self, inter: &mut Interpreter, args: &[ConValue]) -> IResult<()> {
println!("{args:?}");
inter.push(args);
Ok(())
}
}
}
}
pub mod scope {
//! Lexical and non-lexical scoping for variables
use super::{
error::{Error, IResult, Reason},
builtin::DEFAULT_BUILTINS,
error::{Error, IResult},
function::Function,
temp_type_impl::ConValue,
Identifier,
FnDecl,
};
use std::collections::HashMap;
#[derive(Clone, Debug, Default)]
pub enum Variable {
#[default]
Uninit,
Init(ConValue),
}
/// Implements a nested lexical scope
#[derive(Clone, Debug, Default)]
pub struct Environment {
outer: Option<Box<Self>>,
vars: HashMap<Identifier, Option<ConValue>>,
vars: HashMap<String, Option<ConValue>>,
}
impl Environment {
pub fn new() -> Self {
let mut out = Self::default();
for &builtin in DEFAULT_BUILTINS {
out.insert(builtin.name(), Some(ConValue::BuiltIn(builtin)))
}
out
}
/// Enter a nested scope
pub fn enter(self: &mut Box<Self>) {
pub fn enter(&mut self) {
let outer = std::mem::take(self);
self.outer = Some(outer);
self.outer = Some(outer.into());
}
/// Exits the scope, destroying all local variables and
/// returning the outer scope, if there is one
@ -605,71 +803,75 @@ pub mod scope {
*self = *outer;
Ok(())
} else {
Err(Error::with_reason(Reason::ScopeExit))
Err(Error::ScopeExit)
}
}
/// Resolves a variable mutably
pub fn get_mut(&mut self, id: &Identifier) -> Option<&mut Option<ConValue>> {
///
/// Returns a mutable reference to the variable's record, if it exists
pub fn get_mut(&mut self, id: &str) -> IResult<&mut Option<ConValue>> {
match self.vars.get_mut(id) {
Some(var) => Some(var),
None => self.outer.as_mut().and_then(|o| o.get_mut(id)),
Some(var) => Ok(var),
None => self
.outer
.as_mut()
.ok_or_else(|| Error::NotDefined(id.into()))?
.get_mut(id),
}
}
/// Resolves a variable immutably
pub fn get(&self, id: &Identifier) -> Option<&Option<ConValue>> {
pub fn get(&self, id: &str) -> IResult<&ConValue> {
match self.vars.get(id) {
Some(var) => Some(var),
None => self.outer.as_ref().and_then(|o| o.get(id)),
Some(var) => var.as_ref().ok_or_else(|| Error::NotInitialized(id.into())),
None => self
.outer
.as_ref()
.ok_or_else(|| Error::NotDefined(id.into()))?
.get(id),
}
}
pub fn insert(&mut self, id: &Identifier, value: Option<ConValue>) {
self.vars.insert(id.clone(), value);
pub fn insert(&mut self, id: &str, value: Option<ConValue>) {
self.vars.insert(id.to_string(), value);
}
/// A convenience function for registering a [FnDecl] as a [Function]
pub fn insert_fn(&mut self, decl: &FnDecl) {
self.vars
.insert(decl.name.0.clone(), Some(Function::new(decl).into()));
}
}
}
pub mod error {
//! The [Error] type represents any error thrown by the [Interpreter](super::Interpreter)
use crate::ast::Identifier;
use super::temp_type_impl::ConValue;
pub type IResult<T> = Result<T, Error>;
/// Represents any error thrown by the [Interpreter](super::Interpreter)
#[derive(Clone, Debug)]
pub struct Error {
reason: Reason,
}
impl Error {
/// Returns the [Reason] for this error
pub fn reason(self) -> Reason {
self.reason
}
/// Creates an error with a given [Reason]
pub(crate) fn with_reason(reason: Reason) -> Self {
Self { reason }
}
/// Creates a [Return](Reason::Return) error, with the given [value](ConValue)
/// Creates a [Return](Error::Return) error, with the given [value](ConValue)
pub fn ret(value: ConValue) -> Self {
Self { reason: Reason::Return(value) }
Error::Return(value)
}
/// Creates a [Break](Reason::Break) error, with the given [value](ConValue)
/// Creates a [Break](Error::Break) error, with the given [value](ConValue)
pub fn brk(value: ConValue) -> Self {
Self { reason: Reason::Break(value) }
Error::Break(value)
}
/// Creates a [Continue](Reason::Continue) error
/// Creates a [Continue](Error::Continue) error
pub fn cnt() -> Self {
Self { reason: Reason::Continue }
Error::Continue
}
}
/// The reason for the [Error]
#[derive(Clone, Debug)]
pub enum Reason {
pub enum Error {
/// Propagate a Return value
Return(ConValue),
/// Propagate a Break value
Break(ConValue),
/// Break propagated across function bounds
BadBreak(ConValue),
/// Continue to the next iteration of a loop
Continue,
/// Underflowed the stack
@ -682,32 +884,38 @@ pub mod error {
/// In clause of For loop didn't yield a Range
NotIterable,
/// A name was not defined in scope before being used
NotDefined(Identifier),
NotDefined(String),
/// A name was defined but not initialized
NotInitialized(Identifier),
NotInitialized(String),
/// A value was called, but is not callable
NotCallable(ConValue),
/// A function was called with the wrong number of arguments
ArgNumber { want: usize, got: usize },
}
impl std::error::Error for Error {}
impl std::fmt::Display for Error {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.reason.fmt(f)
}
}
impl std::fmt::Display for Reason {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Reason::Return(value) => write!(f, "return {value}"),
Reason::Break(value) => write!(f, "break {value}"),
Reason::Continue => "continue".fmt(f),
Reason::StackUnderflow => "Stack underflow".fmt(f),
Reason::ScopeExit => "Exited the last scope. This is a logic bug.".fmt(f),
Reason::TypeError => "Incompatible types".fmt(f),
Reason::NotIterable => "`in` clause of `for` loop did not yield an iterable".fmt(f),
Reason::NotDefined(value) => {
write!(f, "{} not bound. Did you mean `let {};`?", value.0, value.0)
Error::Return(value) => write!(f, "return {value}"),
Error::Break(value) => write!(f, "break {value}"),
Error::BadBreak(value) => write!(f, "rogue break: {value}"),
Error::Continue => "continue".fmt(f),
Error::StackUnderflow => "Stack underflow".fmt(f),
Error::ScopeExit => "Exited the last scope. This is a logic bug.".fmt(f),
Error::TypeError => "Incompatible types".fmt(f),
Error::NotIterable => "`in` clause of `for` loop did not yield an iterable".fmt(f),
Error::NotDefined(value) => {
write!(f, "{value} not bound. Did you mean `let {value};`?")
}
Reason::NotInitialized(value) => {
write!(f, "{} bound, but not initialized", value.0)
Error::NotInitialized(value) => {
write!(f, "{value} bound, but not initialized")
}
Error::NotCallable(value) => {
write!(f, "{value} is not a function, and cannot be called")
}
Error::ArgNumber { want, got } => {
write!(f, "Expected {want} arguments, got {got}")
}
}
}

View File

@ -364,6 +364,7 @@ impl Parser {
let token = self.peek()?;
match token.ty() {
Type::Keyword(Keyword::Let) => self.let_stmt().map(Stmt::Let),
Type::Keyword(Keyword::Fn) => self.fn_decl().map(Stmt::Fn),
_ => {
let out = Stmt::Expr(self.expr()?);
self.consume_type(Type::Semi)?;
@ -385,9 +386,30 @@ impl Parser {
self.consume_type(Type::Semi)?;
Ok(out)
}
// /// Parses a [Function] statement
// fn function_stmt(&mut self) -> PResult<Function> {
// }
/// Parses a [Function] statement
fn fn_decl(&mut self) -> PResult<FnDecl> {
self.keyword(Keyword::Fn)?;
let name = self.identifier()?;
self.consume_type(Type::LParen)?;
let args = self.params()?;
self.consume_type(Type::RParen)?;
// Discard return type, for now
if self.consume_type(Type::Arrow).is_ok() {
self.expr()?;
}
Ok(FnDecl { name, args, body: self.block()? })
}
fn params(&mut self) -> PResult<Vec<Identifier>> {
let mut args = vec![];
while let Ok(ident) = self.identifier() {
args.push(ident);
if self.consume_type(Type::Comma).is_err() {
break;
}
}
Ok(args)
}
}
/// Expressions
impl Parser {
@ -416,22 +438,6 @@ impl Parser {
}
Ok(Block { statements, expr })
}
/// Parses a [group expression](expression::Group)
fn group(&mut self) -> PResult<expression::Group> {
use expression::Group;
let t = self.consume_type(Type::LParen)?.peek()?;
match t.ty() {
Type::RParen => {
self.consume();
Ok(Group::Empty)
}
_ => {
let out = self.expr().map(|expr| Group::Expr(expr.into()));
self.consume_type(Type::RParen)?;
out
}
}
}
/// Parses a [primary expression](expression::Primary)
fn primary(&mut self) -> PResult<expression::Primary> {
use expression::Primary;
@ -450,6 +456,59 @@ impl Parser {
}
}
}
/// [Call] expressions
impl Parser {
/// Parses a [call expression](Call)
fn call(&mut self) -> PResult<Call> {
let callee = self.primary()?;
let Ok(Type::LParen) = self.peek().map(Token::ty) else {
return Ok(Call::Primary(callee));
};
let mut args = vec![];
while self.consume_type(Type::LParen).is_ok() {
match self.consume_type(Type::RParen) {
Ok(_) => args.push(Tuple { elements: vec![] }),
Err(_) => {
args.push(self.tuple()?);
self.consume_type(Type::RParen)?;
}
}
}
Ok(Call::FnCall(FnCall { callee: callee.into(), args }))
}
}
/// Groups and Tuples
impl Parser {
/// Parses a [group expression](Group)
fn group(&mut self) -> PResult<Group> {
let t = self.consume_type(Type::LParen)?.peek()?;
match t.ty() {
Type::RParen => {
self.consume();
Ok(Group::Empty)
}
_ => {
let mut out = self.tuple()?;
let out = if out.elements.len() == 1 {
Group::Single(out.elements.remove(0).into())
} else {
Group::Tuple(out)
};
self.consume_type(Type::RParen)?;
Ok(out)
}
}
}
/// Parses a [tuple expression](Tuple)
fn tuple(&mut self) -> PResult<Tuple> {
let mut elements = vec![self.expr()?];
while self.consume_type(Type::Comma).is_ok() {
elements.push(self.expr()?);
}
Ok(Tuple { elements })
}
}
/// Helper macro for math parsing subexpressions with production
/// ```ebnf
@ -481,12 +540,13 @@ macro binary ($($f:ident = $a:ident, $b:ident);*$(;)?) {$(
/// # [Arithmetic and Logical Subexpressions](math)
impl Parser {
fn assign(&mut self) -> PResult<math::Operation> {
use expression::Primary;
use math::{Assign, Operation};
let next = self.compare()?;
let Ok(operator) = self.assign_op() else {
return Ok(next);
};
let Operation::Primary(expression::Primary::Identifier(target)) = next else {
let Operation::Call(Call::Primary(Primary::Identifier(target))) = next else {
return Ok(next);
};
Ok(Operation::Assign(Assign {
@ -522,7 +582,7 @@ impl Parser {
}
/// Parses a [primary operation](math::Operation::Primary) expression
fn primary_operation(&mut self) -> PResult<math::Operation> {
Ok(math::Operation::Primary(self.primary()?))
Ok(math::Operation::Call(self.call()?))
}
}
macro operator_impl ($($(#[$m:meta])* $f:ident : {$($type:pat => $op:ident),*$(,)?})*) {
@ -674,7 +734,7 @@ impl Parser {
// it's fine for `else` to be missing entirely
self.keyword(Keyword::Else)
.ok()
.map(|p| Ok(control::Else { block: p.block()? }))
.map(|p| Ok(control::Else { expr: p.expr()?.into() }))
.transpose()
}
/// Parses a [break](control::Break) expression

View File

@ -78,6 +78,7 @@ impl<W: Write> Visitor<IOResult<()>> for Printer<W> {
fn visit_statement(&mut self, stmt: &Stmt) -> IOResult<()> {
match stmt {
Stmt::Let(stmt) => self.visit_let(stmt)?,
Stmt::Fn(function) => self.visit_fn_decl(function)?,
Stmt::Expr(e) => {
self.visit_expr(e)?;
self.put(';').map(drop)?
@ -101,6 +102,21 @@ impl<W: Write> Visitor<IOResult<()>> for Printer<W> {
self.put(';').map(drop)
}
fn visit_fn_decl(&mut self, function: &FnDecl) -> IOResult<()> {
let FnDecl { name, args, body } = function;
self.put("fn")?.space()?;
self.visit_identifier(name)?;
self.space()?.put('(')?;
for (idx, arg) in args.iter().enumerate() {
if idx > 0 {
self.put(',')?.space()?;
}
self.visit_identifier(arg)?;
}
self.put(')')?.space()?;
self.visit_block(body)
}
fn visit_assign(&mut self, assign: &math::Assign) -> IOResult<()> {
let math::Assign { target, operator, init } = assign;
self.visit_identifier(target)?;
@ -205,8 +221,8 @@ impl<W: Write> Visitor<IOResult<()>> for Printer<W> {
None => Ok(()),
}
}
fn visit_else(&mut self, expr: &control::Else) -> IOResult<()> {
self.space()?.put("else")?.space()?.visit_block(&expr.block)
fn visit_else(&mut self, else_: &control::Else) -> IOResult<()> {
self.space()?.put("else")?.space()?.visit_expr(&else_.expr)
}
fn visit_continue(&mut self, _: &control::Continue) -> IOResult<()> {
self.put("continue").map(drop)
@ -254,14 +270,34 @@ impl<W: Write> Visitor<IOResult<()>> for Printer<W> {
self.dedent().newline()?.put('}').map(drop)
}
fn visit_group(&mut self, expr: &expression::Group) -> IOResult<()> {
match expr {
expression::Group::Expr(expr) => {
self.put('(')?.space()?;
fn visit_tuple(&mut self, tuple: &Tuple) -> IOResult<()> {
for (idx, expr) in tuple.elements.iter().enumerate() {
if idx > 0 {
self.put(',')?.space()?;
}
self.visit_expr(expr)?;
}
Ok(())
}
fn visit_group(&mut self, expr: &Group) -> IOResult<()> {
self.put('(')?;
match expr {
Group::Tuple(tuple) => self.space()?.visit_tuple(tuple),
Group::Single(expr) => self.space()?.visit_expr(expr),
Group::Empty => self.visit_empty(),
}?;
self.space()?.put(')').map(drop)
}
expression::Group::Empty => self.visit_empty(),
}
fn visit_fn_call(&mut self, call: &FnCall) -> IOResult<()> {
let FnCall { callee, args } = call;
self.visit_primary(callee)?;
for arg_list in args {
self.put('(')?;
self.visit_tuple(arg_list)?;
self.put(')')?;
}
Ok(())
}
}

View File

@ -11,15 +11,15 @@ Friday each month.
- [x] Write AST for expression grammar
- [x] Write parser for AST
- [ ] Create tests for parser (and AST)
- [ ] Parse `dummy.cl` into a valid AST
- [x] Parse `dummy.cl` into a valid AST
- [x] Pretty printer, for debugging
- [ ] Create minimal statement grammar
- [ ] Variable definition statements
- [ ] Function definition statements
- [x] Create minimal statement grammar
- [x] Variable definition statements
- [x] Function definition statements
## Short Goals:
- [ ] `for` loops and `while` loops can be used on the trailing side of an assignment
- [ ] Tree-walk interpreter for prototyping and debugging
- [x] `for` loops and `while` loops can be used on the trailing side of an assignment
- [x] Tree-walk interpreter for prototyping and debugging
- [ ] Data structures and sum-type enums
- [ ] Expression type-checker
- [ ] Trait/Interface system