parser: Add recursive descent parser for AST. TODO: Error recovery and synchronization.

This commit is contained in:
John 2023-10-16 22:50:15 -05:00
parent 0a99a37bd8
commit b89ed307a2
2 changed files with 405 additions and 3 deletions

View File

@ -1528,7 +1528,409 @@ pub mod lexer {
} }
pub mod parser { pub mod parser {
//! Parses tokens into an AST //! Parses [tokens](super::token) into an [AST](super::ast)
use super::{
ast::preamble::*,
lexer::Lexer,
token::{Keyword, Token, Type},
};
use error::{Error, *};
mod error {
use super::{Token, Type};
#[derive(Clone, Debug, Default, PartialEq, Eq)]
pub enum Reason {
Expected(Type),
NotIdentifier,
NotLiteral,
NotString,
NotBool,
NotFloat,
FloatExponentOverflow,
FloatMantissaOverflow,
NotInt,
IntOverflow,
NotControlFlow,
NotBranch,
EndOfFile,
#[default]
Unspecified,
}
use Reason::*;
/// [Parser] [Result]
pub type PResult<T> = Result<T, Error>;
#[derive(Clone, Debug, Default, PartialEq, Eq)]
pub struct Error {
reason: Reason,
start: Option<Token>,
}
macro error_impl($($fn:ident$(($($p:ident: $t:ty),*))?: $reason:expr),*$(,)?) {$(
/// Creates an [Error] with this [Reason]:
#[doc = concat!("[`", stringify!($reason), "`]")]
pub fn $fn($($($p : $t),*)?) -> Self {
Self { reason: $reason$(($($p)*))?, start: None }
}
)*}
impl Error {
pub fn token(self, start: Token) -> Self {
Self { start: Some(start), ..self }
}
pub fn start(&self) -> Option<Token> {
self.start
}
pub fn reason(self, reason: Reason) -> Self {
Self { reason, ..self }
}
error_impl! {
expected(e: Type): Expected,
not_identifier: NotIdentifier,
not_literal: NotLiteral,
not_string: NotString,
not_bool: NotBool,
not_float: NotFloat,
float_exponent_overflow: FloatExponentOverflow,
float_mantissa_overflow: FloatMantissaOverflow,
not_int: NotInt,
int_overflow: IntOverflow,
not_control_flow: NotControlFlow,
not_branch: NotBranch,
end_of_file: EndOfFile,
unspecified: Unspecified,
}
}
}
/// The Parser performs recursive descent on the AST's grammar
/// using a provided [Lexer].
pub struct Parser<'t> {
tokens: Vec<Token>,
panic_stack: Vec<usize>,
text: &'t str,
curr: usize,
}
impl<'t> From<Lexer<'t>> for Parser<'t> {
fn from(value: Lexer<'t>) -> Self {
let (tokens, text) = value.consume();
Self::new(tokens, text)
}
}
impl<'t> Parser<'t> {
/// Create a new [Parser] from a list of [Tokens][1]
/// and the [text](str) used to generate that list
/// (as [Tokens][1] do not store their strings)
///
/// [1]: Token
pub fn new(tokens: Vec<Token>, text: &'t str) -> Self {
Self { tokens, text, panic_stack: vec![], curr: 0 }
}
/// Consumes any consecutive comments
fn consume_comments(&mut self) -> &mut Self {
while let Some(Type::Comment) = self.peek().map(|t| t.ty()) {
self.curr += 1;
}
self
}
/// Consume the current token
#[inline]
pub fn consume(&mut self) -> &mut Self {
self.curr += 1;
self.consume_comments();
self
}
/// Peek at the current token
pub fn peek(&self) -> Option<&Token> {
self.tokens.get(self.curr)
}
/// Look ahead `n` tokens
pub fn ahead(&self, n: usize) -> Option<&Token> {
self.tokens.get(self.curr.wrapping_add(n))
}
/// Look behind `n` tokens
pub fn behind(&self, n: usize) -> Option<&Token> {
self.tokens.get(self.curr.wrapping_sub(n))
}
/// Records the current position on the panic stack
pub fn mark(&mut self) -> &mut Self {
self.panic_stack.push(self.curr);
self
}
/// Erases a recorded position from the panic stack
pub fn unmark(&mut self) -> &mut Self {
self.panic_stack.pop();
self
}
/// Unwinds the panic stack one step
pub fn unwind(&mut self) -> Option<usize> {
let out = self.panic_stack.pop();
if let Some(v) = out {
self.curr = v;
}
out
}
/// Parse the [start of an AST](Start)
pub fn parse(&mut self) -> PResult<Start> {
self.consume_comments();
Ok(Start(self.expr()?))
}
}
/// Helpers
impl<'t> Parser<'t> {
fn consume_type(&mut self, t: Type) -> PResult<&mut Self> {
self.matches(t)?;
Ok(self.consume())
}
fn check_eof(&mut self) -> PResult<&mut Self> {
if self.curr < self.tokens.len() {
Ok(self)
} else {
Err(Error::end_of_file())
}
}
fn todo_error(&mut self, l: u32, c: u32, s: &str) -> Error {
eprintln!("TODO: {s}:{l}:{c}");
Error::unspecified().token(*self.peek().unwrap())
}
fn matches(&mut self, e: Type) -> PResult<&Token> {
let t = self.check_eof()?.peek().expect("self should not be eof");
if t.ty() != e {
Err(Error::expected(e).token(*t))?
}
Ok(t)
}
fn keyword(&mut self, keyword: Keyword) -> PResult<&mut Self> {
self.consume_type(Type::Keyword(keyword))
}
fn delimited<F, R>(&mut self, lhs: Type, mid: F, rhs: Type) -> PResult<R>
where F: Fn(&mut Self) -> PResult<R> {
self.consume_type(lhs)?;
let out = mid(self);
self.consume_type(rhs)?;
out
}
}
macro ptodo_err($self:expr $(, $t:expr)*) {
$($t;)*
$self.todo_error(line!(), column!(), file!())
}
macro ptodo($self:expr $(, $t:expr)*) {
$($t;)*
Err(ptodo_err!($self))
}
fn check_eof(t: Option<&Token>) -> PResult<&Token> {
t.ok_or(Error::end_of_file())
}
/// # Terminals and Pseudo-Terminals
impl<'t> Parser<'t> {
pub fn identifier(&mut self) -> PResult<Identifier> {
let range = self.matches(Type::Identifier)?.range();
Ok(Identifier(self.consume().text[range].into()))
}
pub fn literal(&mut self) -> PResult<literal::Literal> {
use literal::Literal::*;
use Keyword::{False, True};
let tok = check_eof(self.peek())?;
match tok.ty() {
Type::Float => self.float().map(Float),
Type::Integer => self.int().map(Int),
Type::String => self.string().map(String),
Type::Character => self.char().map(Char),
Type::Keyword(True | False) => self.bool().map(Bool),
_ => Err(Error::not_literal().token(*tok)),
}
}
pub fn float(&mut self) -> PResult<literal::Float> {
ptodo!(self)
}
pub fn int(&mut self) -> PResult<u128> {
#[cfg(debug_assertions)]
eprintln!("/* TODO: parse integer literals from other bases */");
let token = *self.matches(Type::Integer)?;
self.consume().text[token.range()]
.parse()
.map_err(|_| Error::not_int().token(token))
}
pub fn string(&mut self) -> PResult<String> {
let range = self.matches(Type::String)?.range();
Ok(self.consume().text[range].into())
}
pub fn char(&mut self) -> PResult<char> {
ptodo!(self)
}
pub fn bool(&mut self) -> PResult<bool> {
use Keyword::{False, True};
let token = check_eof(self.peek())?;
let out = match token.ty() {
Type::Keyword(False) => false,
Type::Keyword(True) => true,
_ => Err(Error::not_bool().token(*token))?,
};
self.consume();
Ok(out)
}
}
/// Expressions
impl<'t> Parser<'t> {
pub fn expr(&mut self) -> PResult<expression::Expr> {
use expression::Expr;
self.flow()
.map(Expr::Flow)
.or_else(|_| self.ignore().map(Expr::Ignore))
}
pub fn block(&mut self) -> PResult<expression::Block> {
self.delimited(Type::LCurly, Parser::expr, Type::RCurly)
.map(|e| expression::Block { expr: Box::new(e) })
}
pub fn group(&mut self) -> PResult<expression::Group> {
self.delimited(Type::LParen, Parser::expr, Type::RParen)
.map(|e| expression::Group { expr: Box::new(e) })
}
pub fn r#final(&mut self) -> PResult<expression::Final> {
use expression::Final;
self.identifier()
.map(Final::Identifier)
.or_else(|_| self.literal().map(Final::Literal))
.or_else(|_| self.block().map(Final::Block))
.or_else(|_| self.group().map(Final::Group))
.or_else(|_| self.branch().map(Final::Branch))
}
}
/// Helper macro for math parsing subexpressions with production
/// ```ebnf
/// Ret = a (b a)*
/// ```
/// # Examples
/// ```rust,ignore
/// math_impl!{
/// function_name: ret::Value = parse_operands, parse_operators;
/// }
/// ```
/// becomes
/// ```rust,ignore
/// pub fn function_name(&mut self) -> PResult<ret::Value> { ... }
/// ```
macro math_impl ($($f: ident: $Ret:path = $a:ident, $b:ident);*$(;)?) {$(
pub fn $f (&mut self) -> PResult<$Ret> {
let (first, mut others) = (self.$a()?, vec![]);
while let Some(op) = self.$b() {
others.push((op, self.$a()?));
}
Ok($Ret(first, others))
}
)*}
/// # [Arithmetic and Logical Subexpressions](math)
impl<'t> Parser<'t> {
math_impl! {
//name returns operands operators
ignore: math::Ignore = assign, ignore_op;
assign: math::Assign = compare, assign_op;
compare: math::Compare = logic, compare_op;
logic: math::Logic = bitwise, logic_op;
bitwise: math::Bitwise = shift, bitwise_op;
shift: math::Shift = term, shift_op;
term: math::Term = factor, term_op;
factor: math::Factor = unary, factor_op;
}
pub fn unary(&mut self) -> PResult<math::Unary> {
let mut ops = vec![];
while let Some(op) = self.unary_op() {
ops.push(op)
}
Ok(math::Unary(ops, self.r#final()?))
}
}
macro operator_impl($($(#[$m:meta])*$f:ident: $Ret:ty),*$(,)*) {$(
$(#[$m])* pub fn $f(&mut self) -> Option<$Ret> {
let out: Option<$Ret> = self.peek()?.ty().into();
if out.is_some() { self.consume(); }
out
}
)*}
/// # [Operators](operator)
impl<'t> Parser<'t> {
operator_impl! {
ignore_op: operator::Ignore,
compare_op: operator::Compare,
assign_op: operator::Assign,
logic_op: operator::Logic,
bitwise_op: operator::Bitwise,
shift_op: operator::Shift,
term_op: operator::Term,
factor_op: operator::Factor,
unary_op: operator::Unary,
}
}
/// # [Control Flow](control)
impl<'t> Parser<'t> {
pub fn branch(&mut self) -> PResult<control::Branch> {
use control::Branch;
use Keyword::{For, If, While};
let token = check_eof(self.peek())?;
match token.ty() {
Type::Keyword(While) => self.parse_while().map(Branch::While),
Type::Keyword(For) => self.parse_for().map(Branch::For),
Type::Keyword(If) => self.parse_if().map(Branch::If),
_ => Err(Error::not_branch().token(*token)),
}
}
pub fn parse_if(&mut self) -> PResult<control::If> {
self.consume_type(Type::Keyword(Keyword::If))?;
Ok(control::If {
cond: self.expr()?.into(),
body: self.block()?,
else_: self.parse_else()?,
})
}
pub fn parse_while(&mut self) -> PResult<control::While> {
self.consume_type(Type::Keyword(Keyword::While))?;
Ok(control::While {
cond: self.expr()?.into(),
body: self.block()?,
else_: self.parse_else()?,
})
}
pub fn parse_for(&mut self) -> PResult<control::For> {
self.keyword(Keyword::For)?;
Ok(control::For {
var: self.identifier()?,
iter: { self.keyword(Keyword::In)?.expr()?.into() },
body: self.block()?,
else_: self.parse_else()?,
})
}
pub fn parse_else(&mut self) -> PResult<Option<control::Else>> {
// it's fine for `else` to be missing entirely
match self.keyword(Keyword::Else) {
Ok(_) => Ok(Some(control::Else { block: self.block()? })),
Err(_) => Ok(None),
}
}
pub fn flow(&mut self) -> PResult<control::Flow> {
use control::Flow;
use Keyword::{Break, Continue, Return};
let token = check_eof(self.peek())?;
match token.ty() {
Type::Keyword(Break) => self.parse_break().map(Flow::Break),
Type::Keyword(Return) => self.parse_return().map(Flow::Return),
Type::Keyword(Continue) => self.parse_continue().map(Flow::Continue),
_ => Err(Error::not_control_flow().token(*token)),
}
}
pub fn parse_break(&mut self) -> PResult<control::Break> {
Ok(control::Break { expr: self.keyword(Keyword::Break)?.expr()?.into() })
}
pub fn parse_return(&mut self) -> PResult<control::Return> {
Ok(control::Return { expr: self.keyword(Keyword::Return)?.expr()?.into() })
}
pub fn parse_continue(&mut self) -> PResult<control::Continue> {
ptodo!(self)
}
}
}
} }
pub mod interpreter { pub mod interpreter {

View File

@ -8,8 +8,8 @@ Friday each month.
- [x] Decide on a minimal set of keywords and operators to support - [x] Decide on a minimal set of keywords and operators to support
- [x] Lex an entire Rust source file (minus generics, paths, and lifetimes) - [x] Lex an entire Rust source file (minus generics, paths, and lifetimes)
- [x] Write expression grammar - [x] Write expression grammar
- [ ] Write AST for expression grammar - [x] Write AST for expression grammar
- [ ] Write parser for AST - [x] Write parser for AST
- [ ] Create tests for parser (and AST) - [ ] Create tests for parser (and AST)
- [ ] Parse `dummy.cl` into a valid AST - [ ] Parse `dummy.cl` into a valid AST
- [ ] Pretty printer, for debugging - [ ] Pretty printer, for debugging