conlang: deprecate the AST
This commit is contained in:
parent
6bb2f3774f
commit
5e2f365f45
@ -7,7 +7,7 @@
|
||||
//! [`Identifier`]` := `[`IDENTIFIER`](crate::token::token_type::Type::Identifier)
|
||||
//!
|
||||
//! See [statement], [literal], and [expression] for more information.
|
||||
|
||||
#![deprecated]
|
||||
pub mod preamble {
|
||||
#![allow(deprecated)]
|
||||
//! Common imports for working with the [ast](super)
|
||||
@ -123,12 +123,30 @@ pub mod statement {
|
||||
/// # Syntax
|
||||
/// [`Fn`](Stmt::Fn) := `"fn"` [`Identifier`] `'('` `Args...` `')'` [`Block`]
|
||||
Fn(FnDecl),
|
||||
/// Contains a module declaration
|
||||
/// # Syntax
|
||||
/// [`Mod`](Stmt::Mod) := `"mod"` [`Identifier`] `'{'`
|
||||
///
|
||||
/// `'}'`
|
||||
/// Contains an expression statement
|
||||
/// # Syntax
|
||||
/// [`Expr`](Stmt::Expr) := [`Expr`] `;`
|
||||
Expr(Expr),
|
||||
}
|
||||
|
||||
/// Contains the declarations allowed in a module
|
||||
///
|
||||
/// # Syntax
|
||||
/// [Mod](Module::Mod) := "mod" [Identifier] '{' [Module] '}'
|
||||
/// [`Let`](Module::Let) := `"let"` [`Identifier`] (`:` `Type`)? (`=` [`Expr`])? `;`
|
||||
#[derive(Clone, Debug)]
|
||||
pub enum Module {
|
||||
Struct(StructDecl),
|
||||
Mod(ModuleDecl),
|
||||
Let(Let),
|
||||
Fn(FnDecl),
|
||||
}
|
||||
|
||||
/// Contains a variable declaration
|
||||
/// # Syntax
|
||||
/// [`Let`] := `let` [`Identifier`] (`:`) `Type`)? (`=` [`Expr`])? `;`
|
||||
@ -160,7 +178,22 @@ pub mod statement {
|
||||
pub ty: Option<TypeExpr>,
|
||||
}
|
||||
|
||||
/// Contains the name and declaration
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct ModuleDecl {}
|
||||
|
||||
// TODO: Create closure, transmute fndecl into a name and closure
|
||||
/// Contains the name and field information for a struct
|
||||
///
|
||||
/// # Syntax
|
||||
/// [`StructDecl`]` := "struct" `[`Identifier`]` '{'
|
||||
/// (`[`Identifier`]` ':' `[`TypeExpr`]`),*
|
||||
/// '}'`
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct StructDecl {
|
||||
pub name: Identifier,
|
||||
pub data: Vec<(Identifier, TypeExpr)>,
|
||||
}
|
||||
}
|
||||
|
||||
pub mod path {
|
||||
@ -324,6 +357,10 @@ pub mod expression {
|
||||
pub callee: Box<Primary>,
|
||||
pub args: Vec<Tuple>,
|
||||
}
|
||||
#[allow(non_snake_case)]
|
||||
pub fn FnCall(callee: Box<Primary>, args: Vec<Tuple>) -> FnCall {
|
||||
FnCall { callee, args }
|
||||
}
|
||||
}
|
||||
|
||||
pub mod tuple {
|
||||
@ -762,6 +799,16 @@ pub mod todo {
|
||||
//! traits, modules, etc.
|
||||
}
|
||||
|
||||
pub mod module {
|
||||
//! Module support
|
||||
//! - [ ] Add Module Declaration type : ModDecl = "mod" Identifier '{' Module '}' ;
|
||||
//! - [ ] Change Program to Module : Module = (ModDecl | FnDecl | Let)*
|
||||
//! - [ ] Implementer's note: Modules must be traversed breadth-first, with no
|
||||
//! alpha-renaming
|
||||
//! - [ ] Blocks should probably also be traversed breadth-first, and Let declarations
|
||||
//! hoisted up, leaving initialization assignments in-place
|
||||
}
|
||||
|
||||
pub mod structure {
|
||||
//! Struct support
|
||||
//! - [ ] Add struct declaration expression (returns a struct declaration)
|
||||
|
@ -1,5 +1,6 @@
|
||||
//! Parses [tokens](super::token) into an [AST](super::ast)
|
||||
|
||||
#![deprecated]
|
||||
#![allow(deprecated)]
|
||||
use super::{ast::preamble::*, lexer::Lexer, token::preamble::*};
|
||||
use error::{Error, *};
|
||||
|
||||
|
@ -1,5 +1,6 @@
|
||||
//! A [Printer] pretty-prints a Conlang [syntax tree](crate::ast)
|
||||
|
||||
#![deprecated]
|
||||
#![allow(deprecated)]
|
||||
use super::ast::preamble::*;
|
||||
use std::{
|
||||
fmt::Display,
|
||||
|
@ -3,8 +3,6 @@
|
||||
//! This will hopefully become a fully fledged static resolution pass in the future
|
||||
use std::collections::HashMap;
|
||||
|
||||
use crate::ast::preamble::*;
|
||||
|
||||
use scopeguard::Scoped;
|
||||
pub mod scopeguard {
|
||||
//! Implements a generic RAII scope-guard
|
||||
@ -488,362 +486,374 @@ pub trait Resolve {
|
||||
Ok(Type::Empty)
|
||||
}
|
||||
}
|
||||
|
||||
impl Resolve for Start {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
let Self(program) = self;
|
||||
program.resolve(resolver)
|
||||
}
|
||||
}
|
||||
impl Resolve for Program {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
let Self(module) = self;
|
||||
for decl in module {
|
||||
decl.resolve(resolver)?;
|
||||
}
|
||||
// TODO: record the number of module-level assignments into the AST
|
||||
Ok(Type::Empty)
|
||||
}
|
||||
}
|
||||
impl Resolve for Stmt {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
match self {
|
||||
Stmt::Let(value) => value.resolve(resolver),
|
||||
Stmt::Fn(value) => value.resolve(resolver),
|
||||
Stmt::Expr(value) => value.resolve(resolver),
|
||||
mod ast1 {
|
||||
#![allow(deprecated)]
|
||||
use super::*;
|
||||
use crate::ast::preamble::*;
|
||||
impl Resolve for Start {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
let Self(program) = self;
|
||||
program.resolve(resolver)
|
||||
}
|
||||
}
|
||||
}
|
||||
impl Resolve for Let {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
let Let { name: Name { symbol: Identifier { name, index }, mutable, ty: _ }, init } = self;
|
||||
debugln!("ty> let {name} ...");
|
||||
if let Some(init) = init {
|
||||
let ty = init.resolve(resolver)?;
|
||||
*index = Some(resolver.insert_scope(name, *mutable)?);
|
||||
resolver.get_mut(name)?.assign(name, &ty)?;
|
||||
} else {
|
||||
resolver.insert_scope(name, *mutable)?;
|
||||
}
|
||||
Ok(Type::Empty)
|
||||
}
|
||||
}
|
||||
impl Resolve for FnDecl {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
let FnDecl { name: Name { symbol: Identifier { name, index }, .. }, args, body } = self;
|
||||
debugln!("ty> fn {name} ...");
|
||||
// register the name at module scope
|
||||
*index = Some(resolver.insert_module(name, false)?);
|
||||
// create a new lexical scope
|
||||
let scopes = std::mem::take(&mut resolver.scopes);
|
||||
// type-check the function body
|
||||
let out = {
|
||||
let mut resolver = resolver.frame();
|
||||
let mut evaluated_args = vec![];
|
||||
for arg in args {
|
||||
evaluated_args.push(arg.resolve(&mut resolver)?)
|
||||
impl Resolve for Program {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
let Self(module) = self;
|
||||
for decl in module {
|
||||
decl.resolve(resolver)?;
|
||||
}
|
||||
let fn_decl = Type::Fn { args: evaluated_args.clone(), ret: Box::new(Type::Empty) };
|
||||
resolver.get_mut(name)?.assign(name, &fn_decl)?;
|
||||
module!(resolver, name, { body.resolve(&mut resolver) })
|
||||
};
|
||||
let _ = std::mem::replace(&mut resolver.scopes, scopes);
|
||||
out
|
||||
}
|
||||
}
|
||||
impl Resolve for Name {
|
||||
fn resolve(&mut self, _resolver: &mut Resolver) -> TyResult<Type> {
|
||||
Ok(Type::Empty)
|
||||
}
|
||||
}
|
||||
impl Resolve for Block {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
let Block { let_count: _, statements, expr } = self;
|
||||
let mut resolver = resolver.frame();
|
||||
for stmt in statements {
|
||||
stmt.resolve(&mut resolver)?;
|
||||
// TODO: record the number of module-level assignments into the AST
|
||||
Ok(Type::Empty)
|
||||
}
|
||||
expr.resolve(&mut resolver)
|
||||
}
|
||||
}
|
||||
impl Resolve for Expr {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
let Expr(expr) = self;
|
||||
expr.resolve(resolver)
|
||||
impl Resolve for Stmt {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
match self {
|
||||
Stmt::Let(value) => value.resolve(resolver),
|
||||
Stmt::Fn(value) => value.resolve(resolver),
|
||||
Stmt::Expr(value) => value.resolve(resolver),
|
||||
}
|
||||
}
|
||||
}
|
||||
impl Resolve for Let {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
let Let { name: Name { symbol: Identifier { name, index }, mutable, ty: _ }, init } =
|
||||
self;
|
||||
debugln!("ty> let {name} ...");
|
||||
if let Some(init) = init {
|
||||
let ty = init.resolve(resolver)?;
|
||||
*index = Some(resolver.insert_scope(name, *mutable)?);
|
||||
resolver.get_mut(name)?.assign(name, &ty)?;
|
||||
} else {
|
||||
resolver.insert_scope(name, *mutable)?;
|
||||
}
|
||||
Ok(Type::Empty)
|
||||
}
|
||||
}
|
||||
impl Resolve for FnDecl {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
let FnDecl { name: Name { symbol: Identifier { name, index }, .. }, args, body } = self;
|
||||
debugln!("ty> fn {name} ...");
|
||||
// register the name at module scope
|
||||
*index = Some(resolver.insert_module(name, false)?);
|
||||
// create a new lexical scope
|
||||
let scopes = std::mem::take(&mut resolver.scopes);
|
||||
// type-check the function body
|
||||
let out = {
|
||||
let mut resolver = resolver.frame();
|
||||
let mut evaluated_args = vec![];
|
||||
for arg in args {
|
||||
evaluated_args.push(arg.resolve(&mut resolver)?)
|
||||
}
|
||||
let fn_decl = Type::Fn { args: evaluated_args.clone(), ret: Box::new(Type::Empty) };
|
||||
resolver.get_mut(name)?.assign(name, &fn_decl)?;
|
||||
module!(resolver, name, { body.resolve(&mut resolver) })
|
||||
};
|
||||
let _ = std::mem::replace(&mut resolver.scopes, scopes);
|
||||
out
|
||||
}
|
||||
}
|
||||
impl Resolve for Name {
|
||||
fn resolve(&mut self, _resolver: &mut Resolver) -> TyResult<Type> {
|
||||
Ok(Type::Empty)
|
||||
}
|
||||
}
|
||||
impl Resolve for Block {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
let Block { let_count: _, statements, expr } = self;
|
||||
let mut resolver = resolver.frame();
|
||||
for stmt in statements {
|
||||
stmt.resolve(&mut resolver)?;
|
||||
}
|
||||
expr.resolve(&mut resolver)
|
||||
}
|
||||
}
|
||||
impl Resolve for Expr {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
let Expr(expr) = self;
|
||||
expr.resolve(resolver)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Resolve for Operation {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
match self {
|
||||
Operation::Assign(value) => value.resolve(resolver),
|
||||
Operation::Binary(value) => value.resolve(resolver),
|
||||
Operation::Unary(value) => value.resolve(resolver),
|
||||
Operation::Call(value) => value.resolve(resolver),
|
||||
impl Resolve for Operation {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
match self {
|
||||
Operation::Assign(value) => value.resolve(resolver),
|
||||
Operation::Binary(value) => value.resolve(resolver),
|
||||
Operation::Unary(value) => value.resolve(resolver),
|
||||
Operation::Call(value) => value.resolve(resolver),
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
impl Resolve for Assign {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
let Assign { target, operator, init } = self;
|
||||
// Evaluate the initializer expression
|
||||
let ty = init.resolve(resolver)?;
|
||||
// Resolve the variable
|
||||
match (operator, resolver.get_mut(&target.name)?) {
|
||||
(
|
||||
operator::Assign::Assign,
|
||||
Variable { status: Status::Initialized(_), mutable: false, index },
|
||||
) => Err(Error::ImmutableAssign(target.name.clone(), *index)),
|
||||
// TODO: make typing more expressive for modifying assignment
|
||||
(_, variable) => variable
|
||||
.modify_assign(&target.name, &ty)
|
||||
.map(|_| Type::Empty),
|
||||
impl Resolve for Assign {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
let Assign { target, operator, init } = self;
|
||||
// Evaluate the initializer expression
|
||||
let ty = init.resolve(resolver)?;
|
||||
// Resolve the variable
|
||||
match (operator, resolver.get_mut(&target.name)?) {
|
||||
(
|
||||
operator::Assign::Assign,
|
||||
Variable { status: Status::Initialized(_), mutable: false, index },
|
||||
) => Err(Error::ImmutableAssign(target.name.clone(), *index)),
|
||||
// TODO: make typing more expressive for modifying assignment
|
||||
(_, variable) => variable
|
||||
.modify_assign(&target.name, &ty)
|
||||
.map(|_| Type::Empty),
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Resolve for Binary {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
let Binary { first, other } = self;
|
||||
impl Resolve for Binary {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
let Binary { first, other } = self;
|
||||
|
||||
let mut first = first.resolve(resolver)?;
|
||||
for (op, other) in other {
|
||||
let other = other.resolve(resolver)?;
|
||||
first = resolver.resolve_binary_operator(first, other, op)?;
|
||||
}
|
||||
Ok(first)
|
||||
}
|
||||
}
|
||||
impl Resolve for Unary {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
let Unary { operators, operand } = self;
|
||||
let mut operand = operand.resolve(resolver)?;
|
||||
for op in operators {
|
||||
operand = resolver.resolve_unary_operator(operand, op)?;
|
||||
}
|
||||
Ok(operand)
|
||||
}
|
||||
}
|
||||
/// Resolve [operator]s
|
||||
impl Resolver {
|
||||
fn resolve_binary_operator(
|
||||
&mut self,
|
||||
first: Type,
|
||||
other: Type,
|
||||
op: &operator::Binary,
|
||||
) -> TyResult<Type> {
|
||||
// TODO: check type compatibility for binary ops
|
||||
// TODO: desugar binary ops into function calls, when member functions are a thing
|
||||
eprintln!("Resolve binary operators {first} {op:?} {other}");
|
||||
if first != other {
|
||||
Err(Error::TypeMismatch { want: first, got: other })
|
||||
} else {
|
||||
let mut first = first.resolve(resolver)?;
|
||||
for (op, other) in other {
|
||||
let other = other.resolve(resolver)?;
|
||||
first = resolver.resolve_binary_operator(first, other, op)?;
|
||||
}
|
||||
Ok(first)
|
||||
}
|
||||
}
|
||||
fn resolve_unary_operator(&mut self, operand: Type, op: &operator::Unary) -> TyResult<Type> {
|
||||
// TODO: Allow more expressive unary operator type conversions
|
||||
todo!("Resolve unary operators {op:?} {operand}")
|
||||
}
|
||||
}
|
||||
impl Resolve for Call {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
match self {
|
||||
Call::FnCall(value) => value.resolve(resolver),
|
||||
Call::Primary(value) => value.resolve(resolver),
|
||||
impl Resolve for Unary {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
let Unary { operators, operand } = self;
|
||||
let mut operand = operand.resolve(resolver)?;
|
||||
for op in operators {
|
||||
operand = resolver.resolve_unary_operator(operand, op)?;
|
||||
}
|
||||
Ok(operand)
|
||||
}
|
||||
}
|
||||
}
|
||||
impl Resolve for FnCall {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
let FnCall { callee, args } = self;
|
||||
let mut callee = callee.resolve(resolver)?;
|
||||
for argset in args {
|
||||
// arguments should always be a tuple here
|
||||
let arguments = argset.resolve(resolver)?;
|
||||
let Type::Tuple(arguments) = arguments else {
|
||||
Err(Error::TypeMismatch {
|
||||
want: Type::Tuple(vec![Type::ManyInferred]),
|
||||
got: arguments,
|
||||
})?
|
||||
};
|
||||
// Verify that the callee is a function, and the arguments match.
|
||||
// We need the arguments
|
||||
let Type::Fn { args, ret } = callee else {
|
||||
return Err(Error::TypeMismatch {
|
||||
want: Type::Fn { args: arguments, ret: Type::Inferred.into() },
|
||||
got: callee,
|
||||
})?;
|
||||
};
|
||||
for (want, got) in args.iter().zip(&arguments) {
|
||||
// TODO: verify generics
|
||||
if let Type::Generic(_) = want {
|
||||
continue;
|
||||
}
|
||||
if want != got {
|
||||
/// Resolve [operator]s
|
||||
impl Resolver {
|
||||
fn resolve_binary_operator(
|
||||
&mut self,
|
||||
first: Type,
|
||||
other: Type,
|
||||
op: &operator::Binary,
|
||||
) -> TyResult<Type> {
|
||||
// TODO: check type compatibility for binary ops
|
||||
// TODO: desugar binary ops into function calls, when member functions are a thing
|
||||
eprintln!("Resolve binary operators {first} {op:?} {other}");
|
||||
if first != other {
|
||||
Err(Error::TypeMismatch { want: first, got: other })
|
||||
} else {
|
||||
Ok(first)
|
||||
}
|
||||
}
|
||||
fn resolve_unary_operator(
|
||||
&mut self,
|
||||
operand: Type,
|
||||
op: &operator::Unary,
|
||||
) -> TyResult<Type> {
|
||||
// TODO: Allow more expressive unary operator type conversions
|
||||
todo!("Resolve unary operators {op:?} {operand}")
|
||||
}
|
||||
}
|
||||
impl Resolve for Call {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
match self {
|
||||
Call::FnCall(value) => value.resolve(resolver),
|
||||
Call::Primary(value) => value.resolve(resolver),
|
||||
}
|
||||
}
|
||||
}
|
||||
impl Resolve for FnCall {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
let FnCall { callee, args } = self;
|
||||
let mut callee = callee.resolve(resolver)?;
|
||||
for argset in args {
|
||||
// arguments should always be a tuple here
|
||||
let arguments = argset.resolve(resolver)?;
|
||||
let Type::Tuple(arguments) = arguments else {
|
||||
Err(Error::TypeMismatch {
|
||||
want: Type::Tuple(vec![Type::ManyInferred]),
|
||||
got: arguments,
|
||||
})?
|
||||
};
|
||||
// Verify that the callee is a function, and the arguments match.
|
||||
// We need the arguments
|
||||
let Type::Fn { args, ret } = callee else {
|
||||
return Err(Error::TypeMismatch {
|
||||
want: Type::Fn { args: arguments, ret: Type::Inferred.into() },
|
||||
got: Type::Fn { args, ret },
|
||||
got: callee,
|
||||
})?;
|
||||
};
|
||||
for (want, got) in args.iter().zip(&arguments) {
|
||||
// TODO: verify generics
|
||||
if let Type::Generic(_) = want {
|
||||
continue;
|
||||
}
|
||||
if want != got {
|
||||
return Err(Error::TypeMismatch {
|
||||
want: Type::Fn { args: arguments, ret: Type::Inferred.into() },
|
||||
got: Type::Fn { args, ret },
|
||||
})?;
|
||||
}
|
||||
}
|
||||
callee = *ret;
|
||||
}
|
||||
callee = *ret;
|
||||
Ok(callee)
|
||||
}
|
||||
Ok(callee)
|
||||
}
|
||||
}
|
||||
impl Resolve for Primary {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
match self {
|
||||
Primary::Identifier(value) => value.resolve(resolver),
|
||||
Primary::Literal(value) => value.resolve(resolver),
|
||||
Primary::Block(value) => value.resolve(resolver),
|
||||
Primary::Group(value) => value.resolve(resolver),
|
||||
Primary::Branch(value) => value.resolve(resolver),
|
||||
impl Resolve for Primary {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
match self {
|
||||
Primary::Identifier(value) => value.resolve(resolver),
|
||||
Primary::Literal(value) => value.resolve(resolver),
|
||||
Primary::Block(value) => value.resolve(resolver),
|
||||
Primary::Group(value) => value.resolve(resolver),
|
||||
Primary::Branch(value) => value.resolve(resolver),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Resolve for Group {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
match self {
|
||||
Group::Tuple(tuple) => tuple.resolve(resolver),
|
||||
Group::Single(expr) => expr.resolve(resolver),
|
||||
Group::Empty => Ok(Type::Empty),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Resolve for Tuple {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
let Tuple { elements } = self;
|
||||
let mut types = vec![];
|
||||
for expr in elements.iter_mut() {
|
||||
types.push(expr.resolve(resolver)?);
|
||||
}
|
||||
Ok(Type::Tuple(types))
|
||||
}
|
||||
}
|
||||
|
||||
impl Resolve for Identifier {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
let Identifier { name, index: id_index } = self;
|
||||
let Variable { index, status, .. } = resolver.get(name)?;
|
||||
*id_index = Some(*index);
|
||||
let ty = match status {
|
||||
Status::Initialized(t) => t,
|
||||
_ => Err(Error::Uninitialized(name.to_owned(), *index))?,
|
||||
};
|
||||
debugln!("ty> Resolved {} #{index}: {ty}", name);
|
||||
Ok(ty.to_owned())
|
||||
}
|
||||
}
|
||||
impl Resolve for Literal {
|
||||
fn resolve(&mut self, _resolver: &mut Resolver) -> TyResult<Type> {
|
||||
Ok(match self {
|
||||
Literal::String(_) => Type::String,
|
||||
Literal::Char(_) => Type::Char,
|
||||
Literal::Bool(_) => Type::Bool,
|
||||
Literal::Float(_) => Type::Float,
|
||||
Literal::Int(_) => Type::Int,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Resolve for Flow {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
// TODO: Finish this
|
||||
match self {
|
||||
Flow::While(value) => value.resolve(resolver),
|
||||
Flow::If(value) => value.resolve(resolver),
|
||||
Flow::For(value) => value.resolve(resolver),
|
||||
Flow::Continue(value) => value.resolve(resolver),
|
||||
Flow::Return(value) => value.resolve(resolver),
|
||||
Flow::Break(value) => value.resolve(resolver),
|
||||
}
|
||||
}
|
||||
}
|
||||
impl Resolve for While {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
// TODO: Finish this
|
||||
// Visit else first, save that to a break-pattern stack in the Resolver,
|
||||
// and check it inside Break::resolve()
|
||||
let While { cond, body, else_ } = self;
|
||||
cond.resolve(resolver)?; // must be Type::Bool
|
||||
body.resolve(resolver)?; // discard
|
||||
else_.resolve(resolver) // compare with returns inside body
|
||||
}
|
||||
}
|
||||
impl Resolve for If {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
let If { cond, body, else_ } = self;
|
||||
let cond = cond.resolve(resolver)?;
|
||||
if Type::Bool != cond {
|
||||
return Err(Error::TypeMismatch { want: Type::Bool, got: cond });
|
||||
}
|
||||
let body_ty = body.resolve(resolver)?;
|
||||
let else_ty = else_.resolve(resolver)?;
|
||||
if body_ty == else_ty {
|
||||
Ok(body_ty)
|
||||
} else {
|
||||
Err(Error::TypeMismatch { want: body_ty, got: else_ty })
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Resolve for For {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
let For { var: Identifier { name, index }, iter, body, else_ } = self;
|
||||
debugln!("> for {name} in ...");
|
||||
// Visit the iter expression and get its type
|
||||
let range = iter.resolve(resolver)?;
|
||||
let ty = match range {
|
||||
Type::Range(t) => t,
|
||||
got => Err(Error::TypeMismatch { want: Type::Range(Type::Inferred.into()), got })?,
|
||||
};
|
||||
let body_ty = {
|
||||
let mut resolver = resolver.frame();
|
||||
// bind the variable in the loop scope
|
||||
*index = Some(resolver.insert_scope(name, false)?);
|
||||
resolver.get_mut(name)?.assign(name, &ty)?;
|
||||
body.resolve(&mut resolver)
|
||||
}?;
|
||||
// visit the else block
|
||||
let else_ty = else_.resolve(resolver)?;
|
||||
if body_ty != else_ty {
|
||||
Err(Error::TypeMismatch { want: body_ty, got: else_ty })
|
||||
} else {
|
||||
Ok(body_ty)
|
||||
}
|
||||
}
|
||||
}
|
||||
impl Resolve for Else {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
let Else { expr } = self;
|
||||
expr.resolve(resolver)
|
||||
}
|
||||
}
|
||||
|
||||
impl Resolve for Continue {
|
||||
fn resolve(&mut self, _resolver: &mut Resolver) -> TyResult<Type> {
|
||||
// TODO: Finish control flow
|
||||
Ok(Type::Never)
|
||||
}
|
||||
}
|
||||
impl Resolve for Break {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
// TODO: Finish control flow
|
||||
let Break { expr } = self;
|
||||
expr.resolve(resolver)
|
||||
}
|
||||
}
|
||||
impl Resolve for Return {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
// TODO: Finish control flow
|
||||
let Return { expr } = self;
|
||||
expr.resolve(resolver)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Resolve for Group {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
match self {
|
||||
Group::Tuple(tuple) => tuple.resolve(resolver),
|
||||
Group::Single(expr) => expr.resolve(resolver),
|
||||
Group::Empty => Ok(Type::Empty),
|
||||
}
|
||||
}
|
||||
}
|
||||
mod ast2 {}
|
||||
|
||||
impl Resolve for Tuple {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
let Tuple { elements } = self;
|
||||
let mut types = vec![];
|
||||
for expr in elements.iter_mut() {
|
||||
types.push(expr.resolve(resolver)?);
|
||||
}
|
||||
Ok(Type::Tuple(types))
|
||||
}
|
||||
}
|
||||
|
||||
impl Resolve for Identifier {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
let Identifier { name, index: id_index } = self;
|
||||
let Variable { index, status, .. } = resolver.get(name)?;
|
||||
*id_index = Some(*index);
|
||||
let ty = match status {
|
||||
Status::Initialized(t) => t,
|
||||
_ => Err(Error::Uninitialized(name.to_owned(), *index))?,
|
||||
};
|
||||
debugln!("ty> Resolved {} #{index}: {ty}", name);
|
||||
Ok(ty.to_owned())
|
||||
}
|
||||
}
|
||||
impl Resolve for Literal {
|
||||
fn resolve(&mut self, _resolver: &mut Resolver) -> TyResult<Type> {
|
||||
Ok(match self {
|
||||
Literal::String(_) => Type::String,
|
||||
Literal::Char(_) => Type::Char,
|
||||
Literal::Bool(_) => Type::Bool,
|
||||
Literal::Float(_) => Type::Float,
|
||||
Literal::Int(_) => Type::Int,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Resolve for Flow {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
// TODO: Finish this
|
||||
match self {
|
||||
Flow::While(value) => value.resolve(resolver),
|
||||
Flow::If(value) => value.resolve(resolver),
|
||||
Flow::For(value) => value.resolve(resolver),
|
||||
Flow::Continue(value) => value.resolve(resolver),
|
||||
Flow::Return(value) => value.resolve(resolver),
|
||||
Flow::Break(value) => value.resolve(resolver),
|
||||
}
|
||||
}
|
||||
}
|
||||
impl Resolve for While {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
// TODO: Finish this
|
||||
// Visit else first, save that to a break-pattern stack in the Resolver,
|
||||
// and check it inside Break::resolve()
|
||||
let While { cond, body, else_ } = self;
|
||||
cond.resolve(resolver)?; // must be Type::Bool
|
||||
body.resolve(resolver)?; // discard
|
||||
else_.resolve(resolver) // compare with returns inside body
|
||||
}
|
||||
}
|
||||
impl Resolve for If {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
let If { cond, body, else_ } = self;
|
||||
let cond = cond.resolve(resolver)?;
|
||||
if Type::Bool != cond {
|
||||
return Err(Error::TypeMismatch { want: Type::Bool, got: cond });
|
||||
}
|
||||
let body_ty = body.resolve(resolver)?;
|
||||
let else_ty = else_.resolve(resolver)?;
|
||||
if body_ty == else_ty {
|
||||
Ok(body_ty)
|
||||
} else {
|
||||
Err(Error::TypeMismatch { want: body_ty, got: else_ty })
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Resolve for For {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
let For { var: Identifier { name, index }, iter, body, else_ } = self;
|
||||
debugln!("> for {name} in ...");
|
||||
// Visit the iter expression and get its type
|
||||
let range = iter.resolve(resolver)?;
|
||||
let ty = match range {
|
||||
Type::Range(t) => t,
|
||||
got => Err(Error::TypeMismatch { want: Type::Range(Type::Inferred.into()), got })?,
|
||||
};
|
||||
let body_ty = {
|
||||
let mut resolver = resolver.frame();
|
||||
// bind the variable in the loop scope
|
||||
*index = Some(resolver.insert_scope(name, false)?);
|
||||
resolver.get_mut(name)?.assign(name, &ty)?;
|
||||
body.resolve(&mut resolver)
|
||||
}?;
|
||||
// visit the else block
|
||||
let else_ty = else_.resolve(resolver)?;
|
||||
if body_ty != else_ty {
|
||||
Err(Error::TypeMismatch { want: body_ty, got: else_ty })
|
||||
} else {
|
||||
Ok(body_ty)
|
||||
}
|
||||
}
|
||||
}
|
||||
impl Resolve for Else {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
let Else { expr } = self;
|
||||
expr.resolve(resolver)
|
||||
}
|
||||
}
|
||||
|
||||
impl Resolve for Continue {
|
||||
fn resolve(&mut self, _resolver: &mut Resolver) -> TyResult<Type> {
|
||||
// TODO: Finish control flow
|
||||
Ok(Type::Never)
|
||||
}
|
||||
}
|
||||
impl Resolve for Break {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
// TODO: Finish control flow
|
||||
let Break { expr } = self;
|
||||
expr.resolve(resolver)
|
||||
}
|
||||
}
|
||||
impl Resolve for Return {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
// TODO: Finish control flow
|
||||
let Return { expr } = self;
|
||||
expr.resolve(resolver)
|
||||
}
|
||||
}
|
||||
// heakc yea man, generics
|
||||
impl<T: Resolve> Resolve for Option<T> {
|
||||
fn resolve(&mut self, resolver: &mut Resolver) -> TyResult<Type> {
|
||||
|
Loading…
Reference in New Issue
Block a user