Conlang/libconlang/src/lexer.rs

541 lines
18 KiB
Rust
Raw Normal View History

2023-10-17 18:33:07 +00:00
//! Converts a text file into tokens
use crate::token::{Token, Type};
use lerox::Combinator;
pub struct IntoIter<'t> {
lexer: Lexer<'t>,
}
impl<'t> Iterator for IntoIter<'t> {
type Item = Token;
fn next(&mut self) -> Option<Self::Item> {
self.lexer.any()
}
}
impl<'t> IntoIterator for Lexer<'t> {
type Item = Token;
type IntoIter = IntoIter<'t>;
fn into_iter(self) -> Self::IntoIter {
IntoIter { lexer: self }
}
}
#[derive(Clone, Debug)]
pub struct Lexer<'t> {
text: &'t str,
cursor: usize,
line: u32,
col: u32,
2023-10-17 18:33:07 +00:00
}
/// Implements the non-terminals of a language
impl<'t> Lexer<'t> {
pub fn new(text: &'t str) -> Self {
Self { text, cursor: 0, line: 1, col: 1 }
}
/// Consumes the entire [`Lexer`], producing a [`Vec<Token>`]
/// and returning the original string
pub fn consume(self) -> (Vec<Token>, &'t str) {
let text = self.text;
(self.into_iter().collect(), text)
}
/// Counts some length
#[inline]
fn count_len(&mut self, len: usize) -> &mut Self {
self.cursor += len;
self.col += len as u32;
2023-10-17 18:33:07 +00:00
self
}
/// Counts a line
#[inline]
fn count_line(&mut self, lines: u32) -> &mut Self {
2023-10-17 18:33:07 +00:00
self.line += lines;
self.col = 1;
self
}
/// Skips whitespace in the text
fn skip_whitespace(&mut self) {
self.count_len(
Rule::new(self.text())
.and_any(Rule::whitespace_not_newline)
.end()
.unwrap_or_default(),
);
if Rule::new(self.text()).char('\n').end().is_some() {
// recurse until all newlines are skipped
self.count_len(1).count_line(1).skip_whitespace();
}
}
/// Advances the cursor and produces a token from a provided [Rule] function
fn map_rule<F>(&mut self, rule: F, ty: Type) -> Option<Token>
where F: Fn(Rule) -> Rule {
self.skip_whitespace();
let (line, col, start) = (self.line, self.col, self.cursor);
self.count_len(Rule::new(self.text()).and(rule).end()?);
Some(Token::new(ty, start, self.cursor, line, col))
}
/// Gets a slice of text beginning at the cursor
fn text(&self) -> &str {
&self.text[self.cursor..]
}
// classifies a single arbitrary token
/// Returns the result of the rule with the highest precedence, if any matches
pub fn any(&mut self) -> Option<Token> {
None.or_else(|| self.comment())
.or_else(|| self.identifier())
.or_else(|| self.literal())
.or_else(|| self.delimiter())
.or_else(|| self.punctuation())
.or_else(|| self.invalid())
}
/// Attempts to produce a [Type::String], [Type::Float], or [Type::Integer]
pub fn literal(&mut self) -> Option<Token> {
None.or_else(|| self.string())
.or_else(|| self.character())
.or_else(|| self.float())
.or_else(|| self.integer())
}
/// Evaluates delimiter rules
pub fn delimiter(&mut self) -> Option<Token> {
None.or_else(|| self.l_brack())
.or_else(|| self.r_brack())
.or_else(|| self.l_curly())
.or_else(|| self.r_curly())
.or_else(|| self.l_paren())
.or_else(|| self.r_paren())
}
/// Evaluates punctuation rules
pub fn punctuation(&mut self) -> Option<Token> {
None.or_else(|| self.amp_amp())
.or_else(|| self.bar_bar())
.or_else(|| self.not_not())
.or_else(|| self.cat_ear())
.or_else(|| self.eq_eq())
.or_else(|| self.gt_eq())
.or_else(|| self.lt_eq())
.or_else(|| self.not_eq())
.or_else(|| self.lsh_eq())
.or_else(|| self.rsh_eq())
.or_else(|| self.star_eq())
.or_else(|| self.div_eq())
.or_else(|| self.rem_eq())
.or_else(|| self.add_eq())
.or_else(|| self.sub_eq())
.or_else(|| self.and_eq())
.or_else(|| self.or_eq())
.or_else(|| self.xor_eq())
.or_else(|| self.lsh())
.or_else(|| self.rsh())
.or_else(|| self.arrow())
.or_else(|| self.fatarrow())
.or_else(|| self.semi())
.or_else(|| self.dot())
.or_else(|| self.star())
.or_else(|| self.div())
.or_else(|| self.plus())
.or_else(|| self.sub())
.or_else(|| self.rem())
.or_else(|| self.bang())
.or_else(|| self.eq())
.or_else(|| self.lt())
.or_else(|| self.gt())
.or_else(|| self.amp())
.or_else(|| self.bar())
.or_else(|| self.xor())
.or_else(|| self.hash())
.or_else(|| self.at())
.or_else(|| self.colon())
.or_else(|| self.backslash())
.or_else(|| self.question())
.or_else(|| self.comma())
.or_else(|| self.tilde())
.or_else(|| self.grave())
}
pub fn unary_op(&mut self) -> Option<Token> {
self.bang().or_else(|| self.sub())
}
// functions for lexing individual tokens
pub fn invalid(&mut self) -> Option<Token> {
self.map_rule(|r| r.invalid(), Type::Invalid)
}
// comments
pub fn comment(&mut self) -> Option<Token> {
self.map_rule(|r| r.comment(), Type::Comment)
}
// identifiers
pub fn identifier(&mut self) -> Option<Token> {
self.map_rule(|r| r.identifier(), Type::Identifier)
.map(|token| match self.text[token.range()].parse() {
Ok(kw) => token.cast(Type::Keyword(kw)),
Err(_) => token,
})
}
// literals
pub fn integer(&mut self) -> Option<Token> {
self.map_rule(|r| r.integer(), Type::Integer)
}
pub fn float(&mut self) -> Option<Token> {
self.map_rule(|r| r.float(), Type::Float)
}
pub fn string(&mut self) -> Option<Token> {
// TODO: count lines and columns properly within string
self.map_rule(|r| r.string(), Type::String)
.map(|t| t.rebound(t.head + 1, t.tail - 1))
}
pub fn character(&mut self) -> Option<Token> {
self.map_rule(|r| r.character(), Type::Character)
.map(|t| t.rebound(t.head + 1, t.tail - 1))
}
// delimiters
pub fn l_brack(&mut self) -> Option<Token> {
self.map_rule(|r| r.char('['), Type::LBrack)
}
pub fn r_brack(&mut self) -> Option<Token> {
self.map_rule(|r| r.char(']'), Type::RBrack)
}
pub fn l_curly(&mut self) -> Option<Token> {
self.map_rule(|r| r.char('{'), Type::LCurly)
}
pub fn r_curly(&mut self) -> Option<Token> {
self.map_rule(|r| r.char('}'), Type::RCurly)
}
pub fn l_paren(&mut self) -> Option<Token> {
self.map_rule(|r| r.char('('), Type::LParen)
}
pub fn r_paren(&mut self) -> Option<Token> {
self.map_rule(|r| r.char(')'), Type::RParen)
}
// compound punctuation
pub fn lsh(&mut self) -> Option<Token> {
self.map_rule(|r| r.str("<<"), Type::Lsh)
}
pub fn rsh(&mut self) -> Option<Token> {
self.map_rule(|r| r.str(">>"), Type::Rsh)
}
pub fn amp_amp(&mut self) -> Option<Token> {
self.map_rule(|r| r.str("&&"), Type::AmpAmp)
}
pub fn bar_bar(&mut self) -> Option<Token> {
self.map_rule(|r| r.str("||"), Type::BarBar)
}
pub fn not_not(&mut self) -> Option<Token> {
self.map_rule(|r| r.str("!!"), Type::NotNot)
}
pub fn cat_ear(&mut self) -> Option<Token> {
self.map_rule(|r| r.str("^^"), Type::CatEar)
}
pub fn eq_eq(&mut self) -> Option<Token> {
self.map_rule(|r| r.str("=="), Type::EqEq)
}
pub fn gt_eq(&mut self) -> Option<Token> {
self.map_rule(|r| r.str(">="), Type::GtEq)
}
pub fn lt_eq(&mut self) -> Option<Token> {
self.map_rule(|r| r.str("<="), Type::LtEq)
}
pub fn not_eq(&mut self) -> Option<Token> {
self.map_rule(|r| r.str("!="), Type::NotEq)
}
pub fn star_eq(&mut self) -> Option<Token> {
self.map_rule(|r| r.str("*="), Type::StarEq)
}
pub fn div_eq(&mut self) -> Option<Token> {
self.map_rule(|r| r.str("/="), Type::DivEq)
}
pub fn rem_eq(&mut self) -> Option<Token> {
self.map_rule(|r| r.str("%="), Type::RemEq)
}
pub fn add_eq(&mut self) -> Option<Token> {
self.map_rule(|r| r.str("+="), Type::AddEq)
}
pub fn sub_eq(&mut self) -> Option<Token> {
self.map_rule(|r| r.str("-="), Type::SubEq)
}
pub fn and_eq(&mut self) -> Option<Token> {
self.map_rule(|r| r.str("&="), Type::AndEq)
}
pub fn or_eq(&mut self) -> Option<Token> {
self.map_rule(|r| r.str("|="), Type::OrEq)
}
pub fn xor_eq(&mut self) -> Option<Token> {
self.map_rule(|r| r.str("^="), Type::XorEq)
}
pub fn lsh_eq(&mut self) -> Option<Token> {
self.map_rule(|r| r.str("<<="), Type::LshEq)
}
pub fn rsh_eq(&mut self) -> Option<Token> {
self.map_rule(|r| r.str(">>="), Type::RshEq)
}
pub fn arrow(&mut self) -> Option<Token> {
self.map_rule(|r| r.str("->"), Type::Arrow)
}
pub fn fatarrow(&mut self) -> Option<Token> {
self.map_rule(|r| r.str("=>"), Type::FatArrow)
}
// simple punctuation
pub fn semi(&mut self) -> Option<Token> {
self.map_rule(|r| r.char(';'), Type::Semi)
}
pub fn dot(&mut self) -> Option<Token> {
self.map_rule(|r| r.char('.'), Type::Dot)
}
pub fn star(&mut self) -> Option<Token> {
self.map_rule(|r| r.char('*'), Type::Star)
}
pub fn div(&mut self) -> Option<Token> {
self.map_rule(|r| r.char('/'), Type::Div)
}
pub fn plus(&mut self) -> Option<Token> {
self.map_rule(|r| r.char('+'), Type::Plus)
}
pub fn sub(&mut self) -> Option<Token> {
self.map_rule(|r| r.char('-'), Type::Minus)
}
pub fn rem(&mut self) -> Option<Token> {
self.map_rule(|r| r.char('%'), Type::Rem)
}
pub fn bang(&mut self) -> Option<Token> {
self.map_rule(|r| r.char('!'), Type::Bang)
}
pub fn eq(&mut self) -> Option<Token> {
self.map_rule(|r| r.char('='), Type::Eq)
}
pub fn lt(&mut self) -> Option<Token> {
self.map_rule(|r| r.char('<'), Type::Lt)
}
pub fn gt(&mut self) -> Option<Token> {
self.map_rule(|r| r.char('>'), Type::Gt)
}
pub fn amp(&mut self) -> Option<Token> {
self.map_rule(|r| r.char('&'), Type::Amp)
}
pub fn bar(&mut self) -> Option<Token> {
self.map_rule(|r| r.char('|'), Type::Bar)
}
pub fn xor(&mut self) -> Option<Token> {
self.map_rule(|r| r.char('^'), Type::Xor)
}
pub fn hash(&mut self) -> Option<Token> {
self.map_rule(|r| r.char('#'), Type::Hash)
}
pub fn at(&mut self) -> Option<Token> {
self.map_rule(|r| r.char('@'), Type::At)
}
pub fn colon(&mut self) -> Option<Token> {
self.map_rule(|r| r.char(':'), Type::Colon)
}
pub fn question(&mut self) -> Option<Token> {
self.map_rule(|r| r.char('?'), Type::Question)
}
pub fn comma(&mut self) -> Option<Token> {
self.map_rule(|r| r.char(','), Type::Comma)
}
pub fn tilde(&mut self) -> Option<Token> {
self.map_rule(|r| r.char('~'), Type::Tilde)
}
pub fn grave(&mut self) -> Option<Token> {
self.map_rule(|r| r.char('`'), Type::Grave)
}
pub fn backslash(&mut self) -> Option<Token> {
self.map_rule(|r| r.char('\\'), Type::Backslash)
}
}
// TODO: use real, functional parser-combinators here to produce tokens
/// A lexer [Rule] matches patterns in text in a declarative manner
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct Rule<'t> {
text: &'t str,
taken: usize,
is_alright: bool,
}
impl<'t> Rule<'t> {
pub fn new(text: &'t str) -> Self {
Self { text, taken: 0, is_alright: true }
}
pub fn end(self) -> Option<usize> {
self.is_alright.then_some(self.taken)
}
pub fn remaining(&self) -> &str {
self.text
}
}
impl<'t> Rule<'t> {
/// Matches any sequence of non-whitespace characters
pub fn invalid(self) -> Self {
self.and_many(Self::not_whitespace)
}
/// Matches a block, line, or shebang comment
pub fn comment(self) -> Self {
self.and_either(Self::line_comment, Self::block_comment)
}
/// Matches a line or shebang comment
fn line_comment(self) -> Self {
// line_comment := ("//" | "#!/") (!newline)*
self.str("//")
.or(|r| r.str("#!/"))
.and_any(|r| r.not_char('\n'))
}
/// Matches a block comment
fn block_comment(self) -> Self {
// block_comment := "/*" (block_comment | all_but("*/"))* "*/"
self.str("/*")
.and_any(|r| r.and_either(|f| f.block_comment(), |g| g.not_str("*/")))
.str("*/")
}
/// Matches a Rust-style identifier
pub fn identifier(self) -> Self {
// identifier := ('_' | XID_START) ~ XID_CONTINUE*
self.char('_')
.or(Rule::xid_start)
.and_any(Rule::xid_continue)
}
/// Matches a Rust-style base-prefixed int literal
fn integer_kind(self, prefix: &str, digit: impl Fn(Self) -> Self) -> Self {
// int_kind<Prefix, Digit> := Prefix '_'* Digit (Digit | '_')*
self.str(prefix)
.and_any(|r| r.char('_'))
.and(&digit)
.and_any(|r| r.and(&digit).or(|r| r.char('_')))
}
/// Matches a Rust-style integer literal
pub fn integer(self) -> Self {
// integer = (int_kind<0d, dec_digit> | int_kind<0x, hex_digit>
// | int_kind<0o, oct_digit> | int_kind<0b, bin_digit> | dec_digit (dec_digit | '_')*)
self.and_one_of(&[
&|rule| rule.integer_kind("0d", Rule::dec_digit),
&|rule| rule.integer_kind("0x", Rule::hex_digit),
&|rule| rule.integer_kind("0o", Rule::oct_digit),
&|rule| rule.integer_kind("0b", Rule::bin_digit),
&|rule| {
rule.dec_digit()
.and_any(|r| r.dec_digit().or(|r| r.char('_')))
},
])
}
/// Matches a float literal
// TODO: exponent form
pub fn float(self) -> Self {
self.and_any(Rule::dec_digit)
.char('.')
.and_many(Rule::dec_digit)
}
/// Matches one apostrophe-delimited char literal
pub fn character(self) -> Self {
self.char('\'').character_continue().char('\'')
}
pub fn character_continue(self) -> Self {
self.and(|rule| rule.string_escape().or(|rule| rule.not_char('\'')))
}
/// Matches one quote-delimited string literal
pub fn string(self) -> Self {
self.char('"').and_any(Rule::string_continue).char('"')
}
/// Matches one string escape sequence or non-`"` characcter
pub fn string_continue(self) -> Self {
self.and(Rule::string_escape).or(|rule| rule.not_char('"'))
}
}
impl<'t> Rule<'t> {
/// Matches a char lexicographically between start and end
pub fn char_between(self, start: char, end: char) -> Self {
self.char_fn(|c| start <= c && c <= end)
}
/// Matches a single char
pub fn char(self, c: char) -> Self {
self.has(|rule| rule.text.starts_with(c), 1)
}
/// Matches the entirety of a string slice
pub fn str(self, s: &str) -> Self {
self.has(|rule| rule.text.starts_with(s), s.len())
}
/// Matches a char based on the output of a function
pub fn char_fn(self, f: impl Fn(char) -> bool) -> Self {
self.and(|rule| match rule.text.strip_prefix(&f) {
Some(text) => Self { text, taken: rule.taken + next_utf8(rule.text, 1), ..rule },
None => Self { is_alright: false, ..rule },
})
}
/// Matches a single char except c
pub fn not_char(self, c: char) -> Self {
self.has(|rule| !rule.text.starts_with(c), 1)
}
/// Matches a single char unless the text starts with s
pub fn not_str(self, s: &str) -> Self {
self.has(|rule| !rule.text.starts_with(s), 1)
}
// commonly used character classes
/// Matches one of any character
pub fn any(self) -> Self {
self.has(|_| true, 1)
}
/// Matches one whitespace
pub fn whitespace(self) -> Self {
self.char_fn(|c| c.is_whitespace())
}
/// Matches one whitespace, except `'\n'`
pub fn whitespace_not_newline(self) -> Self {
self.char_fn(|c| '\n' != c && c.is_whitespace())
}
/// Matches anything but whitespace
pub fn not_whitespace(self) -> Self {
self.char_fn(|c| !c.is_whitespace())
}
/// Matches one XID_START
pub fn xid_start(self) -> Self {
use unicode_xid::UnicodeXID;
self.char_fn(UnicodeXID::is_xid_start)
}
/// Matches one XID_CONTINUE
pub fn xid_continue(self) -> Self {
use unicode_xid::UnicodeXID;
self.char_fn(UnicodeXID::is_xid_continue)
}
/// Matches one hexadecimal digit
pub fn hex_digit(self) -> Self {
self.char_fn(|c| c.is_ascii_hexdigit())
}
/// Matches one decimal digit
pub fn dec_digit(self) -> Self {
self.char_fn(|c| c.is_ascii_digit())
}
/// Matches one octal digit
pub fn oct_digit(self) -> Self {
self.char_between('0', '7')
}
/// Matches one binary digit
pub fn bin_digit(self) -> Self {
self.char_between('0', '1')
}
/// Matches any string escape "\."
pub fn string_escape(self) -> Self {
self.char('\\').and(Rule::any)
}
/// Performs a consuming condition assertion on the input
fn has(self, condition: impl Fn(&Self) -> bool, len: usize) -> Self {
let len = next_utf8(self.text, len);
self.and(|rule| match condition(&rule) && !rule.text.is_empty() {
true => Self { text: &rule.text[len..], taken: rule.taken + len, ..rule },
false => Self { is_alright: false, ..rule },
})
}
}
impl<'t> lerox::Combinator for Rule<'t> {
fn is_alright(&self) -> bool {
self.is_alright
}
fn into_alright(self) -> Self {
Self { is_alright: true, ..self }
}
}
/// Returns the index of the next unicode character, rounded up
fn next_utf8(text: &str, mut index: usize) -> usize {
index = index.min(text.len());
while !text.is_char_boundary(index) {
index += 1
}
index
}