Chirp/src/cpu.rs
John Breaux fbc0a0b2ea tests: Coverage and cleanup/speedup
- Improved test coverage to >80% of lines, functions
  - When doctests are included.
  - Wrote new unit tests:
    - Explicit tests for invalid instructions in the
      ranges {`5xyn`, `8xyn`, `9xyn`, `Fxbb`}
    - `rand` Tests for 1052671 cycles, to ensure
      randomly generated number is < ANDed byte
    - `Ex9E` (sek), `ExA1`(snek) will press only the expected key,
      then every key except the expected key, for every address
    - `Fx0A` (waitk) asserts based on the waveform of a keypress.
      After all, an A press is an A press.
- Improved test performance by printing slightly less
- Removed nightly requirement
  - (now optional, with feature = "unstable")
- Amended justfile to test with `cargo nextest` (nice)
- Changed release builds to optlevel 3
2023-03-28 07:33:17 -05:00

1128 lines
34 KiB
Rust

// (c) 2023 John A. Breaux
// This code is licensed under MIT license (see LICENSE.txt for details)
//! Decodes and runs instructions
#[cfg(test)]
mod tests;
pub mod disassemble;
use self::disassemble::Disassemble;
use crate::bus::{Bus, Read, Region, Write};
use owo_colors::OwoColorize;
use rand::random;
use std::time::Instant;
type Reg = usize;
type Adr = u16;
type Nib = u8;
/// Controls the authenticity behavior of the CPU on a granular level.
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Quirks {
/// Binary ops in `8xy`(`1`, `2`, `3`) should set vF to 0
pub bin_ops: bool,
/// Shift ops in `8xy`(`6`, `E`) should source from vY instead of vX
pub shift: bool,
/// Draw operations should pause execution until the next timer tick
pub draw_wait: bool,
/// DMA instructions `Fx55`/`Fx65` should change I to I + x + 1
pub dma_inc: bool,
/// Indexed jump instructions should go to ADR + v`N` where `N` is high nibble of adr
pub stupid_jumps: bool,
}
impl From<bool> for Quirks {
fn from(value: bool) -> Self {
if value {
Quirks {
bin_ops: true,
shift: true,
draw_wait: true,
dma_inc: true,
stupid_jumps: false,
}
} else {
Quirks {
bin_ops: false,
shift: false,
draw_wait: false,
dma_inc: false,
stupid_jumps: false,
}
}
}
}
impl Default for Quirks {
fn default() -> Self {
Self::from(false)
}
}
#[derive(Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct ControlFlags {
pub debug: bool,
pub pause: bool,
pub keypause: bool,
pub vbi_wait: bool,
pub lastkey: Option<usize>,
pub quirks: Quirks,
pub monotonic: Option<usize>,
}
impl ControlFlags {
/// Toggles debug mode
///
/// # Examples
/// ```rust
///# use chirp::prelude::*;
///# fn main() -> Result<()> {
/// let mut cpu = CPU::default();
/// assert_eq!(true, cpu.flags.debug);
/// cpu.flags.debug();
/// assert_eq!(false, cpu.flags.debug);
///# Ok(())
///# }
/// ```
pub fn debug(&mut self) {
self.debug = !self.debug
}
/// Toggles pause
///
/// # Examples
/// ```rust
///# use chirp::prelude::*;
///# fn main() -> Result<()> {
/// let mut cpu = CPU::default();
/// assert_eq!(false, cpu.flags.pause);
/// cpu.flags.pause();
/// assert_eq!(true, cpu.flags.pause);
///# Ok(())
///# }
/// ```
pub fn pause(&mut self) {
self.pause = !self.pause
}
}
/// Represents the internal state of the CPU interpreter
#[derive(Clone, Debug, PartialEq)]
pub struct CPU {
pub flags: ControlFlags,
// memory map info
screen: Adr,
font: Adr,
// registers
pc: Adr,
sp: Adr,
i: Adr,
v: [u8; 16],
delay: f64,
sound: f64,
// I/O
keys: [bool; 16],
// Execution data
timer: Instant,
cycle: usize,
breakpoints: Vec<Adr>,
disassembler: Disassemble,
}
// public interface
impl CPU {
// TODO: implement From<&bus> for CPU
/// Constructs a new CPU, taking all configurable parameters
/// # Examples
/// ```rust
/// # use chirp::prelude::*;
/// let cpu = CPU::new(
/// 0xf00, // screen location
/// 0x50, // font location
/// 0x200, // start of program
/// 0xefe, // top of stack
/// Disassemble::default(),
/// vec![], // Breakpoints
/// ControlFlags::default()
/// );
/// dbg!(cpu);
/// ```
pub fn new(
screen: Adr,
font: Adr,
pc: Adr,
sp: Adr,
disassembler: Disassemble,
breakpoints: Vec<Adr>,
flags: ControlFlags,
) -> Self {
CPU {
disassembler,
screen,
font,
pc,
sp,
breakpoints,
flags,
..Default::default()
}
}
/// Presses a key
/// # Examples
/// ```rust
///# use chirp::prelude::*;
///# fn main() -> Result<()> {
/// let mut cpu = CPU::default();
/// cpu.press(0x7);
/// cpu.press(0xF);
///# Ok(())
///# }
/// ```
pub fn press(&mut self, key: usize) {
if (0..16).contains(&key) {
self.keys[key] = true;
}
}
/// Releases a key
///
/// If keypause is enabled, this disables keypause and records the last released key.
/// # Examples
/// ```rust
///# use chirp::prelude::*;
///# fn main() -> Result<()> {
/// let mut cpu = CPU::default();
/// cpu.press(0x7);
/// cpu.release(0x7);
///# Ok(())
///# }
/// ```
pub fn release(&mut self, key: usize) {
if (0..16).contains(&key) {
self.keys[key] = false;
if self.flags.keypause {
self.flags.lastkey = Some(key);
}
self.flags.keypause = false;
}
}
/// Sets a general purpose register in the CPU
/// # Examples
/// ```rust
/// # use chirp::prelude::*;
/// // Create a new CPU, and set v4 to 0x41
/// let mut cpu = CPU::default();
/// cpu.set_gpr(0x4, 0x41);
/// // Dump the CPU registers
/// cpu.dump();
/// ```
pub fn set_gpr(&mut self, gpr: Reg, value: u8) {
if let Some(gpr) = self.v.get_mut(gpr) {
*gpr = value;
}
}
/// Gets the program counter
/// # Examples
/// ```rust
///# use chirp::prelude::*;
///# fn main() -> Result<()> {
/// let mut cpu = CPU::default();
/// assert_eq!(0x200, cpu.pc());
///# Ok(())
///# }
/// ```
pub fn pc(&self) -> Adr {
self.pc
}
/// Gets the number of cycles the CPU has executed
///
/// If cpu.flags.monotonic is Some, the cycle count will be
/// updated even when the CPU is in drawpause or keypause
/// # Examples
/// ```rust
///# use chirp::prelude::*;
///# fn main() -> Result<()> {
/// let mut cpu = CPU::default();
/// assert_eq!(0x0, cpu.cycle());
///# Ok(())
///# }
/// ```
pub fn cycle(&self) -> usize {
self.cycle
}
/// Soft resets the CPU, releasing keypause and
/// reinitializing the program counter to 0x200
/// # Examples
/// ```rust
///# use chirp::prelude::*;
///# fn main() -> Result<()> {
/// let mut cpu = CPU::new(
/// 0xf00,
/// 0x50,
/// 0x340,
/// 0xefe,
/// Disassemble::default(),
/// vec![],
/// ControlFlags::default()
/// );
/// cpu.flags.keypause = true;
/// cpu.flags.vbi_wait = true;
/// assert_eq!(0x340, cpu.pc());
/// cpu.soft_reset();
/// assert_eq!(0x200, cpu.pc());
/// assert_eq!(false, cpu.flags.keypause);
/// assert_eq!(false, cpu.flags.vbi_wait);
///# Ok(())
///# }
/// ```
pub fn soft_reset(&mut self) {
self.pc = 0x200;
self.flags.keypause = false;
self.flags.vbi_wait = false;
}
/// Set a breakpoint
// TODO: Unit test this
pub fn set_break(&mut self, point: Adr) -> &mut Self {
if !self.breakpoints.contains(&point) {
self.breakpoints.push(point)
}
self
}
/// Unset a breakpoint
// TODO: Unit test this
pub fn unset_break(&mut self, point: Adr) -> &mut Self {
fn linear_find(needle: Adr, haystack: &Vec<Adr>) -> Option<usize> {
for (i, v) in haystack.iter().enumerate() {
if *v == needle {
return Some(i);
}
}
None
}
if let Some(idx) = linear_find(point, &self.breakpoints) {
assert_eq!(point, self.breakpoints.swap_remove(idx));
}
self
}
/// Unpauses the emulator for a single tick,
/// even if cpu.flags.pause is set.
///
/// NOTE: does not synchronize with delay timers
/// # Examples
/// ```rust
///# use chirp::prelude::*;
///# fn main() -> Result<()> {
/// let mut cpu = CPU::default();
/// let mut bus = bus!{
/// Program [0x0200..0x0f00] = &[
/// 0x00, 0xe0, // cls
/// 0x22, 0x02, // jump 0x202 (pc)
/// ],
/// Screen [0x0f00..0x1000],
/// };
/// cpu.singlestep(&mut bus);
/// assert_eq!(0x202, cpu.pc());
/// assert_eq!(1, cpu.cycle());
///# Ok(())
///# }
/// ```
pub fn singlestep(&mut self, bus: &mut Bus) -> &mut Self {
self.flags.pause = false;
self.tick(bus);
self.flags.vbi_wait = false;
self.flags.pause = true;
self
}
/// Unpauses the emulator for `steps` ticks
///
/// Ticks the timers every `rate` ticks
/// # Examples
/// ```rust
///# use chirp::prelude::*;
///# fn main() -> Result<()> {
/// let mut cpu = CPU::default();
/// let mut bus = bus!{
/// Program [0x0200..0x0f00] = &[
/// 0x00, 0xe0, // cls
/// 0x22, 0x02, // jump 0x202 (pc)
/// ],
/// Screen [0x0f00..0x1000],
/// };
/// cpu.multistep(&mut bus, 0x20);
/// assert_eq!(0x202, cpu.pc());
/// assert_eq!(0x20, cpu.cycle());
///# Ok(())
///# }
/// ```
pub fn multistep(&mut self, bus: &mut Bus, steps: usize) -> &mut Self {
for _ in 0..steps {
self.tick(bus);
self.vertical_blank();
}
self
}
/// Simulates vertical blanking
///
/// If monotonic timing is `enabled`:
/// - Ticks the sound and delay timers according to CPU cycle count
/// - Disables framepause
/// If monotonic timing is `disabled`:
/// - Subtracts the elapsed time in fractions of a frame
/// from st/dt
/// - Disables framepause if the duration exceeds that of a frame
pub fn vertical_blank(&mut self) -> &mut Self {
if self.flags.pause {
return self;
}
// Use a monotonic counter when testing
if let Some(speed) = self.flags.monotonic {
if self.flags.vbi_wait {
self.flags.vbi_wait = !(self.cycle % speed == 0);
}
self.delay -= 1.0 / speed as f64;
self.sound -= 1.0 / speed as f64;
return self;
};
let time = self.timer.elapsed().as_secs_f64() * 60.0;
self.timer = Instant::now();
if time > 1.0 {
self.flags.vbi_wait = false;
}
if self.delay > 0.0 {
self.delay -= time;
}
if self.sound > 0.0 {
self.sound -= time;
}
self
}
/// Executes a single instruction
/// # Examples
/// ```rust
///# use chirp::prelude::*;
///# fn main() -> Result<()> {
/// let mut cpu = CPU::default();
/// let mut bus = bus!{
/// Program [0x0200..0x0f00] = &[
/// 0x00, 0xe0, // cls
/// 0x22, 0x02, // jump 0x202 (pc)
/// ],
/// Screen [0x0f00..0x1000],
/// };
/// cpu.tick(&mut bus);
/// assert_eq!(0x202, cpu.pc());
/// assert_eq!(1, cpu.cycle());
///# Ok(())
///# }
/// ```
/// # Panics
/// Will panic if an invalid instruction is executed
/// ```rust,should_panic
///# use chirp::prelude::*;
///# fn main() -> Result<()> {
/// let mut cpu = CPU::default();
///# cpu.flags.debug = true; // enable live disassembly
///# cpu.flags.monotonic = Some(8); // enable monotonic/test timing
/// let mut bus = bus!{
/// Program [0x0200..0x0f00] = &[
/// 0xff, 0xff, // invalid!
/// 0x22, 0x02, // jump 0x202 (pc)
/// ],
/// Screen [0x0f00..0x1000],
/// };
/// cpu.multistep(&mut bus, 0x10); // panics!
///# Ok(())
///# }
/// ```
pub fn tick(&mut self, bus: &mut Bus) -> &mut Self {
// Do nothing if paused
if self.flags.pause || self.flags.vbi_wait || self.flags.keypause {
// always tick in test mode
if self.flags.monotonic.is_some() {
self.cycle += 1;
}
return self;
}
self.cycle += 1;
// fetch opcode
let opcode: u16 = bus.read(self.pc);
let pc = self.pc;
// DINC pc
self.pc = self.pc.wrapping_add(2);
// decode opcode
use disassemble::{a, b, i, n, x, y};
let (i, x, y, n, b, a) = (
i(opcode),
x(opcode),
y(opcode),
n(opcode),
b(opcode),
a(opcode),
);
match i {
// # Issue a system call
// |opcode| effect |
// |------|------------------------------------|
// | 00e0 | Clear screen memory to all 0 |
// | 00ee | Return from subroutine |
0x0 => match a {
0x0e0 => self.clear_screen(bus),
0x0ee => self.ret(bus),
_ => self.sys(a),
},
// | 1aaa | Sets pc to an absolute address
0x1 => self.jump(a),
// | 2aaa | Pushes pc onto the stack, then jumps to a
0x2 => self.call(a, bus),
// | 3xbb | Skips next instruction if register X == b
0x3 => self.skip_equals_immediate(x, b),
// | 4xbb | Skips next instruction if register X != b
0x4 => self.skip_not_equals_immediate(x, b),
// # Performs a register-register comparison
// |opcode| effect |
// |------|------------------------------------|
// | 9XY0 | Skip next instruction if vX == vY |
0x5 => match n {
0x0 => self.skip_equals(x, y),
_ => self.unimplemented(opcode),
},
// 6xbb: Loads immediate byte b into register vX
0x6 => self.load_immediate(x, b),
// 7xbb: Adds immediate byte b to register vX
0x7 => self.add_immediate(x, b),
// # Performs ALU operation
// |opcode| effect |
// |------|------------------------------------|
// | 8xy0 | Y = X |
// | 8xy1 | X = X | Y |
// | 8xy2 | X = X & Y |
// | 8xy3 | X = X ^ Y |
// | 8xy4 | X = X + Y; Set vF=carry |
// | 8xy5 | X = X - Y; Set vF=carry |
// | 8xy6 | X = X >> 1 |
// | 8xy7 | X = Y - X; Set vF=carry |
// | 8xyE | X = X << 1 |
0x8 => match n {
0x0 => self.load(x, y),
0x1 => self.or(x, y),
0x2 => self.and(x, y),
0x3 => self.xor(x, y),
0x4 => self.add(x, y),
0x5 => self.sub(x, y),
0x6 => self.shift_right(x, y),
0x7 => self.backwards_sub(x, y),
0xE => self.shift_left(x, y),
_ => self.unimplemented(opcode),
},
// # Performs a register-register comparison
// |opcode| effect |
// |------|------------------------------------|
// | 9XY0 | Skip next instruction if vX != vY |
0x9 => match n {
0 => self.skip_not_equals(x, y),
_ => self.unimplemented(opcode),
},
// Aaaa: Load address #a into register I
0xa => self.load_i_immediate(a),
// Baaa: Jump to &adr + v0
0xb => self.jump_indexed(a),
// Cxbb: Stores a random number + the provided byte into vX
0xc => self.rand(x, b),
// Dxyn: Draws n-byte sprite to the screen at coordinates (vX, vY)
0xd => self.draw(x, y, n, bus),
// # Skips instruction on value of keypress
// |opcode| effect |
// |------|------------------------------------|
// | eX9e | Skip next instruction if key == vX |
// | eXa1 | Skip next instruction if key != vX |
0xe => match b {
0x9e => self.skip_key_equals(x),
0xa1 => self.skip_key_not_equals(x),
_ => self.unimplemented(opcode),
},
// # Performs IO
// |opcode| effect |
// |------|------------------------------------|
// | fX07 | Set vX to value in delay timer |
// | fX0a | Wait for input, store in vX m |
// | fX15 | Set sound timer to the value in vX |
// | fX18 | set delay timer to the value in vX |
// | fX1e | Add x to I |
// | fX29 | Load sprite for character x into I |
// | fX33 | BCD convert X into I[0..3] |
// | fX55 | DMA Stor from I to registers 0..X |
// | fX65 | DMA Load from I to registers 0..X |
0xf => match b {
0x07 => self.load_delay_timer(x),
0x0A => self.wait_for_key(x),
0x15 => self.store_delay_timer(x),
0x18 => self.store_sound_timer(x),
0x1E => self.add_i(x),
0x29 => self.load_sprite(x),
0x33 => self.bcd_convert(x, bus),
0x55 => self.store_dma(x, bus),
0x65 => self.load_dma(x, bus),
_ => self.unimplemented(opcode),
},
_ => unreachable!("Extracted nibble from byte, got >nibble?"),
}
let elapsed = self.timer.elapsed();
// Print opcode disassembly:
if self.flags.debug {
std::println!(
"{:3} {:03x}: {:<36}{:?}",
self.cycle.bright_black(),
pc,
self.disassembler.instruction(opcode),
elapsed.dimmed()
);
}
// process breakpoints
if self.breakpoints.contains(&self.pc) {
self.flags.pause = true;
}
self
}
/// Dumps the current state of all CPU registers, and the cycle count
/// # Examples
/// ```rust
///# use chirp::prelude::*;
///# fn main() -> Result<()> {
/// let mut cpu = CPU::default();
/// cpu.dump();
///# Ok(())
///# }
/// ```
/// outputs
/// ```text
/// PC: 0200, SP: 0efe, I: 0000
/// v0: 00 v1: 00 v2: 00 v3: 00
/// v4: 00 v5: 00 v6: 00 v7: 00
/// v8: 00 v9: 00 vA: 00 vB: 00
/// vC: 00 vD: 00 vE: 00 vF: 00
/// DLY: 0, SND: 0, CYC: 0
/// ```
pub fn dump(&self) {
//let dumpstyle = owo_colors::Style::new().bright_black();
std::println!(
"PC: {:04x}, SP: {:04x}, I: {:04x}\n{}DLY: {}, SND: {}, CYC: {:6}",
self.pc,
self.sp,
self.i,
self.v
.into_iter()
.enumerate()
.map(|(i, gpr)| {
format!(
"v{i:X}: {gpr:02x} {}",
match i % 4 {
3 => "\n",
_ => "",
}
)
})
.collect::<String>(),
self.delay,
self.sound,
self.cycle,
);
}
}
impl Default for CPU {
/// Constructs a new CPU with sane defaults and debug mode ON
///
/// | value | default | description
/// |--------|---------|------------
/// | screen |`0x0f00` | Location of screen memory.
/// | font |`0x0050` | Location of font memory.
/// | pc |`0x0200` | Start location. Generally 0x200 or 0x600.
/// | sp |`0x0efe` | Initial top of stack.
///
///
/// # Examples
/// ```rust
/// use chirp::prelude::*;
/// let mut cpu = CPU::default();
/// ```
fn default() -> Self {
CPU {
screen: 0xf00,
font: 0x050,
pc: 0x200,
sp: 0xefe,
i: 0,
v: [0; 16],
delay: 0.0,
sound: 0.0,
cycle: 0,
keys: [false; 16],
flags: ControlFlags {
debug: true,
..Default::default()
},
timer: Instant::now(),
breakpoints: vec![],
disassembler: Disassemble::default(),
}
}
}
// Below this point, comments may be duplicated per impl' block,
// since some opcodes handle multiple instructions.
// | 0aaa | Issues a "System call" (ML routine)
//
// |opcode| effect |
// |------|------------------------------------|
// | 00e0 | Clear screen memory to all 0 |
// | 00ee | Return from subroutine |
impl CPU {
/// Unused instructions
#[inline]
fn unimplemented(&self, opcode: u16) {
unimplemented!("Opcode: {opcode:04x}")
}
/// 0aaa: Handles a "machine language function call" (lmao)
#[inline]
fn sys(&mut self, a: Adr) {
unimplemented!("SYS\t{a:03x}");
}
/// 00e0: Clears the screen memory to 0
#[inline]
fn clear_screen(&mut self, bus: &mut Bus) {
if let Some(screen) = bus.get_region_mut(Region::Screen) {
for byte in screen {
*byte = 0;
}
}
}
/// 00ee: Returns from subroutine
#[inline]
fn ret(&mut self, bus: &impl Read<u16>) {
self.sp = self.sp.wrapping_add(2);
self.pc = bus.read(self.sp);
}
}
// | 1aaa | Sets pc to an absolute address
impl CPU {
/// 1aaa: Sets the program counter to an absolute address
#[inline]
fn jump(&mut self, a: Adr) {
// jump to self == halt
if a.wrapping_add(2) == self.pc {
self.flags.pause = true;
}
self.pc = a;
}
}
// | 2aaa | Pushes pc onto the stack, then jumps to a
impl CPU {
/// 2aaa: Pushes pc onto the stack, then jumps to a
#[inline]
fn call(&mut self, a: Adr, bus: &mut impl Write<u16>) {
bus.write(self.sp, self.pc);
self.sp = self.sp.wrapping_sub(2);
self.pc = a;
}
}
// | 3xbb | Skips next instruction if register X == b
impl CPU {
/// 3xbb: Skips the next instruction if register X == b
#[inline]
fn skip_equals_immediate(&mut self, x: Reg, b: u8) {
if self.v[x] == b {
self.pc = self.pc.wrapping_add(2);
}
}
}
// | 4xbb | Skips next instruction if register X != b
impl CPU {
/// 4xbb: Skips the next instruction if register X != b
#[inline]
fn skip_not_equals_immediate(&mut self, x: Reg, b: u8) {
if self.v[x] != b {
self.pc = self.pc.wrapping_add(2);
}
}
}
// | 5xyn | Performs a register-register comparison
//
// |opcode| effect |
// |------|------------------------------------|
// | 5XY0 | Skip next instruction if vX == vY |
impl CPU {
/// 5xy0: Skips the next instruction if register X != register Y
#[inline]
fn skip_equals(&mut self, x: Reg, y: Reg) {
if self.v[x] == self.v[y] {
self.pc = self.pc.wrapping_add(2);
}
}
}
// | 6xbb | Loads immediate byte b into register vX
impl CPU {
/// 6xbb: Loads immediate byte b into register vX
#[inline]
fn load_immediate(&mut self, x: Reg, b: u8) {
self.v[x] = b;
}
}
// | 7xbb | Adds immediate byte b to register vX
impl CPU {
/// 7xbb: Adds immediate byte b to register vX
#[inline]
fn add_immediate(&mut self, x: Reg, b: u8) {
self.v[x] = self.v[x].wrapping_add(b);
}
}
// | 8xyn | Performs ALU operation
//
// |opcode| effect |
// |------|------------------------------------|
// | 8xy0 | Y = X |
// | 8xy1 | X = X | Y |
// | 8xy2 | X = X & Y |
// | 8xy3 | X = X ^ Y |
// | 8xy4 | X = X + Y; Set vF=carry |
// | 8xy5 | X = X - Y; Set vF=carry |
// | 8xy6 | X = X >> 1 |
// | 8xy7 | X = Y - X; Set vF=carry |
// | 8xyE | X = X << 1 |
impl CPU {
/// 8xy0: Loads the value of y into x
#[inline]
fn load(&mut self, x: Reg, y: Reg) {
self.v[x] = self.v[y];
}
/// 8xy1: Performs bitwise or of vX and vY, and stores the result in vX
///
/// # Quirk
/// The original chip-8 interpreter will clobber vF for any 8-series instruction
#[inline]
fn or(&mut self, x: Reg, y: Reg) {
self.v[x] |= self.v[y];
if self.flags.quirks.bin_ops {
self.v[0xf] = 0;
}
}
/// 8xy2: Performs bitwise and of vX and vY, and stores the result in vX
///
/// # Quirk
/// The original chip-8 interpreter will clobber vF for any 8-series instruction
#[inline]
fn and(&mut self, x: Reg, y: Reg) {
self.v[x] &= self.v[y];
if self.flags.quirks.bin_ops {
self.v[0xf] = 0;
}
}
/// 8xy3: Performs bitwise xor of vX and vY, and stores the result in vX
///
/// # Quirk
/// The original chip-8 interpreter will clobber vF for any 8-series instruction
#[inline]
fn xor(&mut self, x: Reg, y: Reg) {
self.v[x] ^= self.v[y];
if self.flags.quirks.bin_ops {
self.v[0xf] = 0;
}
}
/// 8xy4: Performs addition of vX and vY, and stores the result in vX
#[inline]
fn add(&mut self, x: Reg, y: Reg) {
let carry;
(self.v[x], carry) = self.v[x].overflowing_add(self.v[y]);
self.v[0xf] = carry.into();
}
/// 8xy5: Performs subtraction of vX and vY, and stores the result in vX
#[inline]
fn sub(&mut self, x: Reg, y: Reg) {
let carry;
(self.v[x], carry) = self.v[x].overflowing_sub(self.v[y]);
self.v[0xf] = (!carry).into();
}
/// 8xy6: Performs bitwise right shift of vX
///
/// # Quirk
/// On the original chip-8 interpreter, this shifts vY and stores the result in vX
#[inline]
fn shift_right(&mut self, x: Reg, y: Reg) {
let src: Reg = if self.flags.quirks.shift { y } else { x };
let shift_out = self.v[src] & 1;
self.v[x] = self.v[src] >> 1;
self.v[0xf] = shift_out;
}
/// 8xy7: Performs subtraction of vY and vX, and stores the result in vX
#[inline]
fn backwards_sub(&mut self, x: Reg, y: Reg) {
let carry;
(self.v[x], carry) = self.v[y].overflowing_sub(self.v[x]);
self.v[0xf] = (!carry).into();
}
/// 8X_E: Performs bitwise left shift of vX
///
/// # Quirk
/// On the original chip-8 interpreter, this would perform the operation on vY
/// and store the result in vX. This behavior was left out, for now.
#[inline]
fn shift_left(&mut self, x: Reg, y: Reg) {
let src: Reg = if self.flags.quirks.shift { y } else { x };
let shift_out: u8 = self.v[src] >> 7;
self.v[x] = self.v[src] << 1;
self.v[0xf] = shift_out;
}
}
// | 9xyn | Performs a register-register comparison
//
// |opcode| effect |
// |------|------------------------------------|
// | 9XY0 | Skip next instruction if vX != vY |
impl CPU {
/// 9xy0: Skip next instruction if X != y
#[inline]
fn skip_not_equals(&mut self, x: Reg, y: Reg) {
if self.v[x] != self.v[y] {
self.pc = self.pc.wrapping_add(2);
}
}
}
// | Aaaa | Load address #a into register I
impl CPU {
/// Aadr: Load address #adr into register I
#[inline]
fn load_i_immediate(&mut self, a: Adr) {
self.i = a;
}
}
// | Baaa | Jump to &adr + v0
impl CPU {
/// Badr: Jump to &adr + v0
///
/// Quirk:
/// On the Super-Chip, this does stupid shit
#[inline]
fn jump_indexed(&mut self, a: Adr) {
let reg = if self.flags.quirks.stupid_jumps {
a as usize >> 8
} else {
0
};
self.pc = a.wrapping_add(self.v[reg] as Adr);
}
}
// | Cxbb | Stores a random number + the provided byte into vX
impl CPU {
/// Cxbb: Stores a random number & the provided byte into vX
#[inline]
fn rand(&mut self, x: Reg, b: u8) {
self.v[x] = random::<u8>() & b;
}
}
// | Dxyn | Draws n-byte sprite to the screen at coordinates (vX, vY)
impl CPU {
/// Dxyn: Draws n-byte sprite to the screen at coordinates (vX, vY)
///
/// # Quirk
/// On the original chip-8 interpreter, this will wait for a VBI
fn draw(&mut self, x: Reg, y: Reg, n: Nib, bus: &mut Bus) {
let (x, y) = (self.v[x] as u16 % 64, self.v[y] as u16 % 32);
if self.flags.quirks.draw_wait {
self.flags.vbi_wait = true;
}
self.v[0xf] = 0;
for byte in 0..n as u16 {
if y + byte > 32 {
return;
}
// Calculate the lower bound address based on the X,Y position on the screen
let addr = (y + byte) * 8 + (x & 0x3f) / 8 + self.screen;
// Read a byte of sprite data into a u16, and shift it x % 8 bits
let sprite: u8 = bus.read(self.i + byte);
let sprite = (sprite as u16) << 8 - (x & 7) & if x % 64 > 56 { 0xff00 } else { 0xffff };
// Read a u16 from the bus containing the two bytes which might need to be updated
let mut screen: u16 = bus.read(addr);
// Save the bits-toggled-off flag if necessary
if screen & sprite != 0 {
self.v[0xF] = 1
}
// Update the screen word by XORing the sprite byte
screen ^= sprite;
// Save the result to the screen
bus.write(addr, screen);
}
}
}
// | Exbb | Skips instruction on value of keypress
//
// |opcode| effect |
// |------|------------------------------------|
// | eX9e | Skip next instruction if key == #X |
// | eXa1 | Skip next instruction if key != #X |
impl CPU {
/// Ex9E: Skip next instruction if key == #X
#[inline]
fn skip_key_equals(&mut self, x: Reg) {
let x = self.v[x] as usize;
if self.keys[x] {
self.pc += 2;
}
}
/// ExaE: Skip next instruction if key != #X
#[inline]
fn skip_key_not_equals(&mut self, x: Reg) {
let x = self.v[x] as usize;
if !self.keys[x] {
self.pc += 2;
}
}
}
// | Fxbb | Performs IO
//
// |opcode| effect |
// |------|------------------------------------|
// | fX07 | Set vX to value in delay timer |
// | fX0a | Wait for input, store in vX m |
// | fX15 | Set sound timer to the value in vX |
// | fX18 | set delay timer to the value in vX |
// | fX1e | Add x to I |
// | fX29 | Load sprite for character x into I |
// | fX33 | BCD convert X into I[0..3] |
// | fX55 | DMA Stor from I to registers 0..X |
// | fX65 | DMA Load from I to registers 0..X |
impl CPU {
/// Fx07: Get the current DT, and put it in vX
/// ```py
/// vX = DT
/// ```
#[inline]
fn load_delay_timer(&mut self, x: Reg) {
self.v[x] = self.delay as u8;
}
/// Fx0A: Wait for key, then vX = K
#[inline]
fn wait_for_key(&mut self, x: Reg) {
if let Some(key) = self.flags.lastkey {
self.v[x] = key as u8;
self.flags.lastkey = None;
} else {
self.pc = self.pc.wrapping_sub(2);
self.flags.keypause = true;
}
}
/// Fx15: Load vX into DT
/// ```py
/// DT = vX
/// ```
#[inline]
fn store_delay_timer(&mut self, x: Reg) {
self.delay = self.v[x] as f64;
}
/// Fx18: Load vX into ST
/// ```py
/// ST = vX;
/// ```
#[inline]
fn store_sound_timer(&mut self, x: Reg) {
self.sound = self.v[x] as f64;
}
/// Fx1e: Add vX to I,
/// ```py
/// I += vX;
/// ```
#[inline]
fn add_i(&mut self, x: Reg) {
self.i += self.v[x] as u16;
}
/// Fx29: Load sprite for character x into I
/// ```py
/// I = sprite(X);
/// ```
#[inline]
fn load_sprite(&mut self, x: Reg) {
self.i = self.font + (5 * (self.v[x] as Adr % 0x10));
}
/// Fx33: BCD convert X into I`[0..3]`
#[inline]
fn bcd_convert(&mut self, x: Reg, bus: &mut Bus) {
let x = self.v[x];
bus.write(self.i.wrapping_add(2), x % 10);
bus.write(self.i.wrapping_add(1), x / 10 % 10);
bus.write(self.i, x / 100 % 10);
}
/// Fx55: DMA Stor from I to registers 0..X
///
/// # Quirk
/// The original chip-8 interpreter uses I to directly index memory,
/// with the side effect of leaving I as I+X+1 after the transfer is done.
#[inline]
fn store_dma(&mut self, x: Reg, bus: &mut Bus) {
let i = self.i as usize;
for (reg, value) in bus
.get_mut(i..=i + x)
.unwrap_or_default()
.iter_mut()
.enumerate()
{
*value = self.v[reg]
}
if self.flags.quirks.dma_inc {
self.i += x as Adr + 1;
}
}
/// Fx65: DMA Load from I to registers 0..X
///
/// # Quirk
/// The original chip-8 interpreter uses I to directly index memory,
/// with the side effect of leaving I as I+X+1 after the transfer is done.
#[inline]
fn load_dma(&mut self, x: Reg, bus: &mut Bus) {
let i = self.i as usize;
for (reg, value) in bus
.get(i + 0..=i + x)
.unwrap_or_default()
.iter()
.enumerate()
{
self.v[reg] = *value;
}
if self.flags.quirks.dma_inc {
self.i += x as Adr + 1;
}
}
}