//! The CPU decodes and runs instructions pub mod disassemble; use self::disassemble::Disassemble; use crate::bus::{Bus, Read, Region, Write}; use owo_colors::OwoColorize; use rand::random; use std::time::Instant; type Reg = usize; type Adr = u16; type Nib = u8; #[derive(Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)] pub struct ControlFlags { pub debug: bool, pub pause: bool, pub keypause: bool, pub authentic: bool, } impl ControlFlags { pub fn debug(&mut self) { self.debug = !self.debug } pub fn pause(&mut self) { self.pause = !self.pause } } #[derive(Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)] pub struct Keys { keys: [bool; 16], } #[derive(Clone, Debug, PartialEq)] pub struct CPU { // memory map info screen: Adr, font: Adr, // registers pc: Adr, sp: Adr, i: Adr, v: [u8; 16], delay: u8, sound: u8, // I/O pub keys: [bool; 16], pub flags: ControlFlags, // Execution data cycle: usize, breakpoints: Vec, disassembler: Disassemble, } // public interface impl CPU { /// Press keys (where `keys` is a bitmap of the keys [F-0]) pub fn press(&mut self, key: usize) { if (0..16).contains(&key) { self.keys[key] = true; self.flags.keypause = false; } } /// Release all keys pub fn release(&mut self) { for key in &mut self.keys { *key = false; } } /// Set a general purpose register in the CPU /// # Examples /// ```rust /// # use chumpulator::prelude::*; /// // Create a new CPU, and set v4 to 0x41 /// let cpu = CPU::default() /// .set_gpr(0x4, 0x41); /// // Dump the CPU registers /// cpu.dump(); /// ``` pub fn set_gpr(&mut self, gpr: Reg, value: u8) { if let Some(gpr) = self.v.get_mut(gpr) { *gpr = value; } } /// Constructs a new CPU with sane defaults /// /// | value | default | description /// |--------|---------|------------ /// | screen | 0x0f00 | Location of screen memory. /// | font | 0x0050 | Location of font memory. /// | pc | 0x0200 | Start location. Generally 0x200 or 0x600. /// | sp | 0x0efe | Initial top of stack. /// # Examples /// ```rust /// # use chumpulator::prelude::*; /// let mut cpu = CPU::new(0xf00, 0x50, 0x200, 0xefe, Disassemble::default()); /// let mut cpu = CPU::new(0xf00, 0x50, 0x200, 0xefe, Disassemble::default(), vec![], ControlFlags::default()); /// ``` pub fn new(screen: Adr, font: Adr, pc: Adr, sp: Adr, disassembler: Disassemble) -> Self { CPU { disassembler, screen, font, pc, sp, i: 0, v: [0; 16], delay: 0, sound: 0, cycle: 0, keys: [false; 16], breakpoints: vec![], flags: ControlFlags { debug: true, ..Default::default() }, } } /// Get the program counter pub fn pc(&self) -> Adr { self.pc } /// Soft resets the CPU, releasing keypause and reinitializing the program counter to 0x200 pub fn soft_reset(&mut self) { self.pc = 0x200; self.flags.keypause = false; } /// Set a breakpoint pub fn set_break(&mut self, point: Adr) { if !self.breakpoints.contains(&point) { self.breakpoints.push(point) } } /// Unset a breakpoint pub fn unset_break(&mut self, point: Adr) { fn linear_find(needle: Adr, haystack: &Vec) -> Option { for (i, v) in haystack.iter().enumerate() { if *v == needle { return Some(i); } } None } if let Some(idx) = linear_find(point, &self.breakpoints) { assert_eq!(point, self.breakpoints.swap_remove(idx)); } } /// Unpauses the emulator for a single tick /// NOTE: does not synchronize with delay timers pub fn singlestep(&mut self, bus: &mut Bus) { self.flags.pause = false; self.tick(bus); self.flags.pause = true; } /// Ticks the delay and sound timers pub fn tick_timer(&mut self) { if self.flags.pause { return; } self.delay = self.delay.saturating_sub(1); self.sound = self.sound.saturating_sub(1); } /// Runs a single instruction pub fn tick(&mut self, bus: &mut Bus) { // Do nothing if paused if self.flags.pause || self.flags.keypause { return; } let time = Instant::now(); // fetch opcode let opcode: u16 = bus.read(self.pc); let pc = self.pc; // DINC pc self.pc = self.pc.wrapping_add(2); // decode opcode use disassemble::{a, b, i, n, x, y}; let (i, x, y, n, b, a) = ( i(opcode), x(opcode), y(opcode), n(opcode), b(opcode), a(opcode), ); match i { // # Issue a system call // |opcode| effect | // |------|------------------------------------| // | 00e0 | Clear screen memory to all 0 | // | 00ee | Return from subroutine | 0x0 => match a { 0x0e0 => self.clear_screen(bus), 0x0ee => self.ret(bus), _ => self.sys(a), }, // | 1aaa | Sets pc to an absolute address 0x1 => self.jump(a), // | 2aaa | Pushes pc onto the stack, then jumps to a 0x2 => self.call(a, bus), // | 3xbb | Skips next instruction if register X == b 0x3 => self.skip_if_x_equal_byte(x, b), // | 4xbb | Skips next instruction if register X != b 0x4 => self.skip_if_x_not_equal_byte(x, b), // # Performs a register-register comparison // |opcode| effect | // |------|------------------------------------| // | 9XY0 | Skip next instruction if vX == vY | 0x5 => match n { 0x0 => self.skip_if_x_equal_y(x, y), _ => self.unimplemented(opcode), }, // 6xbb: Loads immediate byte b into register vX 0x6 => self.load_immediate(x, b), // 7xbb: Adds immediate byte b to register vX 0x7 => self.add_immediate(x, b), // # Performs ALU operation // |opcode| effect | // |------|------------------------------------| // | 8xy0 | Y = X | // | 8xy1 | X = X | Y | // | 8xy2 | X = X & Y | // | 8xy3 | X = X ^ Y | // | 8xy4 | X = X + Y; Set vF=carry | // | 8xy5 | X = X - Y; Set vF=carry | // | 8xy6 | X = X >> 1 | // | 8xy7 | X = Y - X; Set vF=carry | // | 8xyE | X = X << 1 | 0x8 => match n { 0x0 => self.load_y_into_x(x, y), 0x1 => self.x_orequals_y(x, y), 0x2 => self.x_andequals_y(x, y), 0x3 => self.x_xorequals_y(x, y), 0x4 => self.x_addequals_y(x, y), 0x5 => self.x_subequals_y(x, y), 0x6 => self.shift_right_x(x), 0x7 => self.backwards_subtract(x, y), 0xE => self.shift_left_x(x), _ => self.unimplemented(opcode), }, // # Performs a register-register comparison // |opcode| effect | // |------|------------------------------------| // | 9XY0 | Skip next instruction if vX != vY | 0x9 => match n { 0 => self.skip_if_x_not_equal_y(x, y), _ => self.unimplemented(opcode), }, // Aaaa: Load address #a into register I 0xa => self.load_indirect_register(a), // Baaa: Jump to &adr + v0 0xb => self.jump_indexed(a), // Cxbb: Stores a random number + the provided byte into vX 0xc => self.rand(x, b), // Dxyn: Draws n-byte sprite to the screen at coordinates (vX, vY) 0xd => self.draw(x, y, n, bus), // # Skips instruction on value of keypress // |opcode| effect | // |------|------------------------------------| // | eX9e | Skip next instruction if key == #X | // | eXa1 | Skip next instruction if key != #X | 0xe => match b { 0x9e => self.skip_if_key_equals_x(x), 0xa1 => self.skip_if_key_not_x(x), _ => self.unimplemented(opcode), }, // # Performs IO // |opcode| effect | // |------|------------------------------------| // | fX07 | Set vX to value in delay timer | // | fX0a | Wait for input, store in vX m | // | fX15 | Set sound timer to the value in vX | // | fX18 | set delay timer to the value in vX | // | fX1e | Add x to I | // | fX29 | Load sprite for character x into I | // | fX33 | BCD convert X into I[0..3] | // | fX55 | DMA Stor from I to registers 0..X | // | fX65 | DMA Load from I to registers 0..X | 0xf => match b { 0x07 => self.get_delay_timer(x), 0x0A => self.wait_for_key(x), 0x15 => self.load_delay_timer(x), 0x18 => self.load_sound_timer(x), 0x1E => self.add_to_indirect(x), 0x29 => self.load_sprite_x(x), 0x33 => self.bcd_convert_i(x, bus), 0x55 => self.dma_store(x, bus), 0x65 => self.dma_load(x, bus), _ => self.unimplemented(opcode), }, _ => unimplemented!("Extracted nibble from byte, got >nibble?"), } let elapsed = time.elapsed(); // Print opcode disassembly: if self.flags.debug { std::println!( "{:3} {:03x}: {:<36}{:?}", self.cycle.bright_black(), pc, self.disassembler.instruction(opcode), elapsed.dimmed() ); } self.cycle += 1; // process breakpoints if self.breakpoints.contains(&self.pc) { self.flags.pause = true; } } pub fn dump(&self) { let dumpstyle = owo_colors::Style::new().bright_black(); let mut dump = format!( "PC: {:04x}, SP: {:04x}, I: {:04x}\n", self.pc, self.sp, self.i ); for (i, gpr) in self.v.into_iter().enumerate() { dump += &format!( "V{i:x}: {:02x} {}", gpr, match i % 4 { 3 => "\n", _ => "", } ) } dump += &format!("DLY: {}, SND: {}", self.delay, self.sound); std::println!("{}", dump.style(dumpstyle)); } } impl Default for CPU { fn default() -> Self { CPU { screen: 0xf00, font: 0x050, pc: 0x200, sp: 0xefe, i: 0, v: [0; 16], delay: 0, sound: 0, cycle: 0, keys: [false; 16], flags: ControlFlags { debug: true, ..Default::default() }, breakpoints: vec![], disassembler: Disassemble::default(), } } } // private implementation impl CPU { /// Unused instructions #[inline] fn unimplemented(&self, opcode: u16) { unimplemented!("Opcode: {opcode:04x}") } /// 0aaa: Handles a "machine language function call" (lmao) #[inline] fn sys(&mut self, a: Adr) { unimplemented!("SYS\t{a:03x}"); } /// 00e0: Clears the screen memory to 0 #[inline] fn clear_screen(&mut self, bus: &mut Bus) { if let Some(screen) = bus.get_region_mut(Region::Screen) { for byte in screen { *byte = 0; } } } /// 00ee: Returns from subroutine #[inline] fn ret(&mut self, bus: &impl Read) { self.sp = self.sp.wrapping_add(2); self.pc = bus.read(self.sp); } /// 1aaa: Sets the program counter to an absolute address #[inline] fn jump(&mut self, a: Adr) { self.pc = a; } /// 2aaa: Pushes pc onto the stack, then jumps to a #[inline] fn call(&mut self, a: Adr, bus: &mut impl Write) { bus.write(self.sp, self.pc); self.sp = self.sp.wrapping_sub(2); self.pc = a; } /// 3xbb: Skips the next instruction if register X == b #[inline] fn skip_if_x_equal_byte(&mut self, x: Reg, b: u8) { if self.v[x] == b { self.pc = self.pc.wrapping_add(2); } } /// 4xbb: Skips the next instruction if register X != b #[inline] fn skip_if_x_not_equal_byte(&mut self, x: Reg, b: u8) { if self.v[x] != b { self.pc = self.pc.wrapping_add(2); } } /// 5xy0: Skips the next instruction if register X != register Y #[inline] fn skip_if_x_equal_y(&mut self, x: Reg, y: Reg) { if self.v[x] == self.v[y] { self.pc = self.pc.wrapping_add(2); } } /// 6xbb: Loads immediate byte b into register vX #[inline] fn load_immediate(&mut self, x: Reg, b: u8) { self.v[x] = b; } /// 7xbb: Adds immediate byte b to register vX #[inline] fn add_immediate(&mut self, x: Reg, b: u8) { self.v[x] = self.v[x].wrapping_add(b); } /// Set the carry register (vF) after math #[inline] fn set_carry(&mut self, x: Reg, y: Reg, f: fn(u16, u16) -> u16, inv: bool) -> u8 { let sum = f(self.v[x] as u16, self.v[y] as u16); self.v[0xf] = if (sum & 0xff00 != 0) ^ inv { 1 } else { 0 }; (sum & 0xff) as u8 } /// 8xy0: Loads the value of y into x #[inline] fn load_y_into_x(&mut self, x: Reg, y: Reg) { self.v[x] = self.v[y]; } /// 8xy1: Performs bitwise or of vX and vY, and stores the result in vX #[inline] fn x_orequals_y(&mut self, x: Reg, y: Reg) { self.v[x] |= self.v[y]; } /// 8xy2: Performs bitwise and of vX and vY, and stores the result in vX #[inline] fn x_andequals_y(&mut self, x: Reg, y: Reg) { self.v[x] &= self.v[y]; } /// 8xy3: Performs bitwise xor of vX and vY, and stores the result in vX #[inline] fn x_xorequals_y(&mut self, x: Reg, y: Reg) { self.v[x] ^= self.v[y]; } /// 8xy4: Performs addition of vX and vY, and stores the result in vX #[inline] fn x_addequals_y(&mut self, x: Reg, y: Reg) { self.v[x] = self.set_carry(x, y, u16::wrapping_add, false); } /// 8xy5: Performs subtraction of vX and vY, and stores the result in vX #[inline] fn x_subequals_y(&mut self, x: Reg, y: Reg) { self.v[x] = self.set_carry(x, y, u16::wrapping_sub, true); } /// 8xy6: Performs bitwise right shift of vX #[inline] fn shift_right_x(&mut self, x: Reg) { let shift_out = self.v[x] & 1; self.v[x] >>= 1; self.v[0xf] = shift_out; } /// 8xy7: Performs subtraction of vY and vX, and stores the result in vX #[inline] fn backwards_subtract(&mut self, x: Reg, y: Reg) { self.v[x] = self.set_carry(y, x, u16::wrapping_sub, true); } /// 8X_E: Performs bitwise left shift of vX #[inline] fn shift_left_x(&mut self, x: Reg) { let shift_out: u8 = self.v[x] >> 7; self.v[x] <<= 1; self.v[0xf] = shift_out; } /// 9xy0: Skip next instruction if X != y #[inline] fn skip_if_x_not_equal_y(&mut self, x: Reg, y: Reg) { if self.v[x] != self.v[y] { self.pc = self.pc.wrapping_add(2); } } /// Aadr: Load address #adr into register I #[inline] fn load_indirect_register(&mut self, a: Adr) { self.i = a; } /// Badr: Jump to &adr + v0 #[inline] fn jump_indexed(&mut self, a: Adr) { self.pc = a.wrapping_add(self.v[0] as Adr); } /// Cxbb: Stores a random number & the provided byte into vX #[inline] fn rand(&mut self, x: Reg, b: u8) { self.v[x] = random::() & b; } /// Dxyn: Draws n-byte sprite to the screen at coordinates (vX, vY) #[inline] fn draw(&mut self, x: Reg, y: Reg, n: Nib, bus: &mut Bus) { // println!("{}", format_args!("draw\t#{n:x}, (x: {:x}, y: {:x})", self.v[x], self.v[y]).green()); let (x, y) = (self.v[x], self.v[y]); self.v[0xf] = 0; for byte in 0..n as u16 { // Calculate the lower bound address based on the X,Y position on the screen let addr = ((y as u16 + byte) * 8) + (x / 8) as u16 + self.screen; // Read a byte of sprite data into a u16, and shift it x % 8 bits let sprite: u8 = bus.read(self.i + byte); let sprite = (sprite as u16) << 1 + (7 - x % 8); // Read a u16 from the bus containing the two bytes which might need to be updated let mut screen: u16 = bus.read(addr); // Save the bits-toggled-off flag if necessary if screen & sprite != 0 { self.v[0xF] = 1 } // Update the screen word by XORing the sprite byte screen ^= sprite; // Save the result back to the screen bus.write(addr, screen); } } /// Ex9E: Skip next instruction if key == #X #[inline] fn skip_if_key_equals_x(&mut self, x: Reg) { let x = self.v[x] as usize; if self.keys[x] { self.pc += 2; } } /// ExaE: Skip next instruction if key != #X #[inline] fn skip_if_key_not_x(&mut self, x: Reg) { let x = self.v[x] as usize; if !self.keys[x] { self.pc += 2; } } /// Fx07: Get the current DT, and put it in vX /// ```py /// vX = DT /// ``` #[inline] fn get_delay_timer(&mut self, x: Reg) { self.v[x] = self.delay; } /// Fx0A: Wait for key, then vX = K #[inline] fn wait_for_key(&mut self, x: Reg) { let mut pressed = false; for bit in 0..16 { if self.keys[bit] { self.v[x] = bit as u8; pressed = true; } } if !pressed { self.pc = self.pc.wrapping_sub(2); self.flags.keypause = true; } } /// Fx15: Load vX into DT /// ```py /// DT = vX /// ``` #[inline] fn load_delay_timer(&mut self, x: Reg) { self.delay = self.v[x]; } /// Fx18: Load vX into ST /// ```py /// ST = vX; /// ``` #[inline] fn load_sound_timer(&mut self, x: Reg) { self.sound = self.v[x]; } /// Fx1e: Add vX to I, /// ```py /// I += vX; /// ``` #[inline] fn add_to_indirect(&mut self, x: Reg) { self.i += self.v[x] as u16; } /// Fx29: Load sprite for character x into I /// ```py /// I = sprite(X); /// ``` #[inline] fn load_sprite_x(&mut self, x: Reg) { self.i = self.font + (5 * (self.v[x] as Adr % 0x10)); } /// Fx33: BCD convert X into I`[0..3]` #[inline] fn bcd_convert_i(&mut self, x: Reg, bus: &mut Bus) { let x = self.v[x]; bus.write(self.i.wrapping_add(2), x % 10); bus.write(self.i.wrapping_add(1), x / 10 % 10); bus.write(self.i, x / 100 % 10); } /// Fx55: DMA Stor from I to registers 0..X #[inline] fn dma_store(&mut self, x: Reg, bus: &mut Bus) { let i = self.i as usize; for (reg, value) in bus .get_mut(i..=i + x) .unwrap_or_default() .iter_mut() .enumerate() { *value = self.v[reg] } if self.flags.authentic { self.i += x as Adr + 1; } } /// Fx65: DMA Load from I to registers 0..X #[inline] fn dma_load(&mut self, x: Reg, bus: &mut Bus) { let i = self.i as usize; for (reg, value) in bus .get(i + 0..=i + x) .unwrap_or_default() .iter() .enumerate() { self.v[reg] = *value; } if self.flags.authentic { self.i += x as Adr + 1; } } }