v0.1.1 Partial Super Chip Support #11

Merged
j merged 12 commits from schip into main 2023-04-15 04:00:41 +00:00
10 changed files with 796 additions and 1011 deletions
Showing only changes of commit 674af62465 - Show all commits

View File

@ -139,7 +139,7 @@ impl State {
0xefe,
Dis::default(),
options.breakpoints,
ControlFlags {
Flags {
quirks: options.mode.unwrap_or_default().into(),
debug: options.debug,
pause: options.pause,

View File

@ -13,8 +13,17 @@ pub trait Disassembler {
}
pub mod disassembler;
pub mod flags;
pub mod instruction;
pub mod mode;
pub mod quirks;
use self::disassembler::{Dis, Insn};
use self::{
disassembler::{Dis, Insn},
flags::Flags,
mode::Mode,
quirks::Quirks,
};
use crate::{
bus::{Bus, Read, Region, Write},
error::{Error, Result},
@ -22,153 +31,12 @@ use crate::{
use imperative_rs::InstructionSet;
use owo_colors::OwoColorize;
use rand::random;
use std::{str::FromStr, time::Instant};
use std::time::Instant;
type Reg = usize;
type Adr = u16;
type Nib = u8;
/// Selects the memory behavior of the interpreter
#[derive(Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum Mode {
/// VIP emulation mode
#[default]
Chip8,
/// Chip-48 emulation mode
SChip,
/// XO-Chip emulation mode
XOChip,
}
impl FromStr for Mode {
type Err = Error;
fn from_str(s: &str) -> std::result::Result<Self, Self::Err> {
match s.to_lowercase().as_str() {
"chip8" | "chip-8" => Ok(Mode::Chip8),
"schip" | "superchip" => Ok(Mode::SChip),
"xo-chip" | "xochip" => Ok(Mode::XOChip),
_ => Err(Error::InvalidMode {
mode: s.to_string(),
}),
}
}
}
/// Controls the authenticity behavior of the CPU on a granular level.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Quirks {
/// Binary ops in `8xy`(`1`, `2`, `3`) shouldn't set vF to 0
pub bin_ops: bool,
/// Shift ops in `8xy`(`6`, `E`) shouldn't source from vY instead of vX
pub shift: bool,
/// Draw operations shouldn't pause execution until the next timer tick
pub draw_wait: bool,
/// DMA instructions `Fx55`/`Fx65` shouldn't change I to I + x + 1
pub dma_inc: bool,
/// Indexed jump instructions should go to `adr` + v`a` where `a` is high nibble of `adr`.
pub stupid_jumps: bool,
}
impl From<bool> for Quirks {
fn from(value: bool) -> Self {
if value {
Quirks {
bin_ops: true,
shift: true,
draw_wait: true,
dma_inc: true,
stupid_jumps: true,
}
} else {
Quirks {
bin_ops: false,
shift: false,
draw_wait: false,
dma_inc: false,
stupid_jumps: false,
}
}
}
}
impl From<Mode> for Quirks {
fn from(value: Mode) -> Self {
match value {
Mode::Chip8 => false.into(),
Mode::SChip => true.into(),
Mode::XOChip => Self {
bin_ops: true,
shift: false,
draw_wait: true,
dma_inc: false,
stupid_jumps: false,
},
}
}
}
impl Default for Quirks {
fn default() -> Self {
Self::from(false)
}
}
/// Represents flags that aid in operation, but aren't inherent to the CPU
#[derive(Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct ControlFlags {
/// Set when debug (live disassembly) mode enabled
pub debug: bool,
/// Set when the emulator is paused by the user and should not update
pub pause: bool,
/// Set when the emulator is waiting for a keypress
pub keypause: bool,
/// Set when the emulator is waiting for a frame to be drawn
pub draw_wait: bool,
/// Set when the emulator is in high-res mode
pub draw_mode: bool,
/// Set to the last key that's been *released* after a keypause
pub lastkey: Option<usize>,
/// Represents the current emulator [Mode]
pub mode: Mode,
/// Represents the set of emulator [Quirks] to enable, independent of the [Mode]
pub quirks: Quirks,
/// Represents the number of instructions to run per tick of the internal timer
pub monotonic: Option<usize>,
}
impl ControlFlags {
/// Toggles debug mode
///
/// # Examples
/// ```rust
/// # use chirp::*;
/// let mut cpu = CPU::default();
/// assert_eq!(true, cpu.flags.debug);
/// // Toggle debug mode
/// cpu.flags.debug();
/// assert_eq!(false, cpu.flags.debug);
/// ```
pub fn debug(&mut self) {
self.debug = !self.debug
}
/// Toggles pause
///
/// # Examples
/// ```rust
/// # use chirp::*;
/// let mut cpu = CPU::default();
/// assert_eq!(false, cpu.flags.pause);
/// // Pause the cpu
/// cpu.flags.pause();
/// assert_eq!(true, cpu.flags.pause);
/// ```
pub fn pause(&mut self) {
self.pause = !self.pause
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
struct Timers {
frame: Instant,
@ -190,7 +58,7 @@ impl Default for Timers {
pub struct CPU {
/// Flags that control how the CPU behaves, but which aren't inherent to the
/// implementation. Includes [Quirks], target IPF, etc.
pub flags: ControlFlags,
pub flags: Flags,
// memory map info
screen: Adr,
font: Adr,
@ -235,7 +103,7 @@ impl CPU {
sp: Adr,
disassembler: Dis,
breakpoints: Vec<Adr>,
flags: ControlFlags,
flags: Flags,
) -> Self {
CPU {
disassembler,
@ -734,7 +602,7 @@ impl Default for CPU {
sound: 0.0,
cycle: 0,
keys: [false; 16],
flags: ControlFlags {
flags: Flags {
debug: true,
..Default::default()
},
@ -744,625 +612,3 @@ impl Default for CPU {
}
}
}
impl CPU {
/// Executes a single [Insn]
#[inline(always)]
#[rustfmt::skip]
fn execute(&mut self, bus: &mut Bus, instruction: Insn) {
match instruction {
// Core Chip-8 instructions
Insn::cls => self.clear_screen(bus),
Insn::ret => self.ret(bus),
Insn::jmp { A } => self.jump(A),
Insn::call { A } => self.call(A, bus),
Insn::seb { x, B } => self.skip_equals_immediate(x, B),
Insn::sneb { x, B } => self.skip_not_equals_immediate(x, B),
Insn::se { y, x } => self.skip_equals(x, y),
Insn::movb { x, B } => self.load_immediate(x, B),
Insn::addb { x, B } => self.add_immediate(x, B),
Insn::mov { y, x } => self.load(x, y),
Insn::or { y, x } => self.or(x, y),
Insn::and { y, x } => self.and(x, y),
Insn::xor { y, x } => self.xor(x, y),
Insn::add { y, x } => self.add(x, y),
Insn::sub { y, x } => self.sub(x, y),
Insn::shr { y, x } => self.shift_right(x, y),
Insn::bsub { y, x } => self.backwards_sub(x, y),
Insn::shl { y, x } => self.shift_left(x, y),
Insn::sne { y, x } => self.skip_not_equals(x, y),
Insn::movI { A } => self.load_i_immediate(A),
Insn::jmpr { A } => self.jump_indexed(A),
Insn::rand { x, B } => self.rand(x, B),
Insn::draw { y, x, n } => self.draw(x, y, n, bus),
Insn::sek { x } => self.skip_key_equals(x),
Insn::snek { x } => self.skip_key_not_equals(x),
Insn::getdt { x } => self.load_delay_timer(x),
Insn::waitk { x } => self.wait_for_key(x),
Insn::setdt { x } => self.store_delay_timer(x),
Insn::movst { x } => self.store_sound_timer(x),
Insn::addI { x } => self.add_i(x),
Insn::font { x } => self.load_sprite(x),
Insn::bcd { x } => self.bcd_convert(x, bus),
Insn::dmao { x } => self.store_dma(x, bus),
Insn::dmai { x } => self.load_dma(x, bus),
// Super-Chip extensions
Insn::scd { n } => self.scroll_down(n, bus),
Insn::scr => self.scroll_right(bus),
Insn::scl => self.scroll_left(bus),
Insn::halt => self.flags.pause(),
Insn::lores => self.init_lores(bus),
Insn::hires => self.init_hires(bus),
Insn::hfont { x } => self.load_big_sprite(x),
Insn::flgo { x } => self.store_flags(x, bus),
Insn::flgi { x } => self.load_flags(x, bus),
}
}
}
// Below this point, comments may be duplicated per impl' block,
// since some opcodes handle multiple instructions.
// |`0aaa`| Issues a "System call" (ML routine)
//
// |opcode| effect |
// |------|------------------------------------|
// |`00e0`| Clear screen memory to all 0 |
// |`00ee`| Return from subroutine |
impl CPU {
/// |`00e0`| Clears the screen memory to 0
#[inline(always)]
fn clear_screen(&mut self, bus: &mut Bus) {
bus.clear_region(Region::Screen);
}
/// |`00ee`| Returns from subroutine
#[inline(always)]
fn ret(&mut self, bus: &impl Read<u16>) {
self.sp = self.sp.wrapping_add(2);
self.pc = bus.read(self.sp);
}
}
// |`1aaa`| Sets pc to an absolute address
impl CPU {
/// |`1aaa`| Sets the program counter to an absolute address
#[inline(always)]
fn jump(&mut self, a: Adr) {
// jump to self == halt
if a.wrapping_add(2) == self.pc {
self.flags.pause = true;
}
self.pc = a;
}
}
// |`2aaa`| Pushes pc onto the stack, then jumps to a
impl CPU {
/// |`2aaa`| Pushes pc onto the stack, then jumps to a
#[inline(always)]
fn call(&mut self, a: Adr, bus: &mut impl Write<u16>) {
bus.write(self.sp, self.pc);
self.sp = self.sp.wrapping_sub(2);
self.pc = a;
}
}
// |`3xbb`| Skips next instruction if register X == b
impl CPU {
/// |`3xbb`| Skips the next instruction if register X == b
#[inline(always)]
fn skip_equals_immediate(&mut self, x: Reg, b: u8) {
if self.v[x] == b {
self.pc = self.pc.wrapping_add(2);
}
}
}
// |`4xbb`| Skips next instruction if register X != b
impl CPU {
/// |`4xbb`| Skips the next instruction if register X != b
#[inline(always)]
fn skip_not_equals_immediate(&mut self, x: Reg, b: u8) {
if self.v[x] != b {
self.pc = self.pc.wrapping_add(2);
}
}
}
// |`5xyn`| Performs a register-register comparison
//
// |opcode| effect |
// |------|------------------------------------|
// |`5XY0`| Skip next instruction if vX == vY |
impl CPU {
/// |`5xy0`| Skips the next instruction if register X != register Y
#[inline(always)]
fn skip_equals(&mut self, x: Reg, y: Reg) {
if self.v[x] == self.v[y] {
self.pc = self.pc.wrapping_add(2);
}
}
}
// |`6xbb`| Loads immediate byte b into register vX
impl CPU {
/// |`6xbb`| Loads immediate byte b into register vX
#[inline(always)]
fn load_immediate(&mut self, x: Reg, b: u8) {
self.v[x] = b;
}
}
// |`7xbb`| Adds immediate byte b to register vX
impl CPU {
/// |`7xbb`| Adds immediate byte b to register vX
#[inline(always)]
fn add_immediate(&mut self, x: Reg, b: u8) {
self.v[x] = self.v[x].wrapping_add(b);
}
}
// |`8xyn`| Performs ALU operation
//
// |opcode| effect |
// |------|------------------------------------|
// |`8xy0`| Y = X |
// |`8xy1`| X = X | Y |
// |`8xy2`| X = X & Y |
// |`8xy3`| X = X ^ Y |
// |`8xy4`| X = X + Y; Set vF=carry |
// |`8xy5`| X = X - Y; Set vF=carry |
// |`8xy6`| X = X >> 1 |
// |`8xy7`| X = Y - X; Set vF=carry |
// |`8xyE`| X = X << 1 |
impl CPU {
/// |`8xy0`| Loads the value of y into x
#[inline(always)]
fn load(&mut self, x: Reg, y: Reg) {
self.v[x] = self.v[y];
}
/// |`8xy1`| Performs bitwise or of vX and vY, and stores the result in vX
///
/// # Quirk
/// The original chip-8 interpreter will clobber vF for any 8-series instruction
#[inline(always)]
fn or(&mut self, x: Reg, y: Reg) {
self.v[x] |= self.v[y];
if !self.flags.quirks.bin_ops {
self.v[0xf] = 0;
}
}
/// |`8xy2`| Performs bitwise and of vX and vY, and stores the result in vX
///
/// # Quirk
/// The original chip-8 interpreter will clobber vF for any 8-series instruction
#[inline(always)]
fn and(&mut self, x: Reg, y: Reg) {
self.v[x] &= self.v[y];
if !self.flags.quirks.bin_ops {
self.v[0xf] = 0;
}
}
/// |`8xy3`| Performs bitwise xor of vX and vY, and stores the result in vX
///
/// # Quirk
/// The original chip-8 interpreter will clobber vF for any 8-series instruction
#[inline(always)]
fn xor(&mut self, x: Reg, y: Reg) {
self.v[x] ^= self.v[y];
if !self.flags.quirks.bin_ops {
self.v[0xf] = 0;
}
}
/// |`8xy4`| Performs addition of vX and vY, and stores the result in vX
#[inline(always)]
fn add(&mut self, x: Reg, y: Reg) {
let carry;
(self.v[x], carry) = self.v[x].overflowing_add(self.v[y]);
self.v[0xf] = carry.into();
}
/// |`8xy5`| Performs subtraction of vX and vY, and stores the result in vX
#[inline(always)]
fn sub(&mut self, x: Reg, y: Reg) {
let carry;
(self.v[x], carry) = self.v[x].overflowing_sub(self.v[y]);
self.v[0xf] = (!carry).into();
}
/// |`8xy6`| Performs bitwise right shift of vX
///
/// # Quirk
/// On the original chip-8 interpreter, this shifts vY and stores the result in vX
#[inline(always)]
fn shift_right(&mut self, x: Reg, y: Reg) {
let src: Reg = if self.flags.quirks.shift { x } else { y };
let shift_out = self.v[src] & 1;
self.v[x] = self.v[src] >> 1;
self.v[0xf] = shift_out;
}
/// |`8xy7`| Performs subtraction of vY and vX, and stores the result in vX
#[inline(always)]
fn backwards_sub(&mut self, x: Reg, y: Reg) {
let carry;
(self.v[x], carry) = self.v[y].overflowing_sub(self.v[x]);
self.v[0xf] = (!carry).into();
}
/// 8X_E: Performs bitwise left shift of vX
///
/// # Quirk
/// On the original chip-8 interpreter, this would perform the operation on vY
/// and store the result in vX. This behavior was left out, for now.
#[inline(always)]
fn shift_left(&mut self, x: Reg, y: Reg) {
let src: Reg = if self.flags.quirks.shift { x } else { y };
let shift_out: u8 = self.v[src] >> 7;
self.v[x] = self.v[src] << 1;
self.v[0xf] = shift_out;
}
}
// |`9xyn`| Performs a register-register comparison
//
// |opcode| effect |
// |------|------------------------------------|
// |`9XY0`| Skip next instruction if vX != vY |
impl CPU {
/// |`9xy0`| Skip next instruction if X != y
#[inline(always)]
fn skip_not_equals(&mut self, x: Reg, y: Reg) {
if self.v[x] != self.v[y] {
self.pc = self.pc.wrapping_add(2);
}
}
}
// |`Aaaa`| Load address #a into register I
impl CPU {
/// |`Aadr`| Load address #adr into register I
#[inline(always)]
fn load_i_immediate(&mut self, a: Adr) {
self.i = a;
}
}
// |`Baaa`| Jump to &adr + v0
impl CPU {
/// |`Badr`| Jump to &adr + v0
///
/// Quirk:
/// On the Super-Chip, this does stupid shit
#[inline(always)]
fn jump_indexed(&mut self, a: Adr) {
let reg = if self.flags.quirks.stupid_jumps {
a as usize >> 8
} else {
0
};
self.pc = a.wrapping_add(self.v[reg] as Adr);
}
}
// |`Cxbb`| Stores a random number & the provided byte into vX
impl CPU {
/// |`Cxbb`| Stores a random number & the provided byte into vX
#[inline(always)]
fn rand(&mut self, x: Reg, b: u8) {
self.v[x] = random::<u8>() & b;
}
}
// |`Dxyn`| Draws n-byte sprite to the screen at coordinates (vX, vY)
impl CPU {
/// |`Dxyn`| Draws n-byte sprite to the screen at coordinates (vX, vY)
///
/// # Quirk
/// On the original chip-8 interpreter, this will wait for a VBI
#[inline(always)]
fn draw(&mut self, x: Reg, y: Reg, n: Nib, bus: &mut Bus) {
if !self.flags.quirks.draw_wait {
self.flags.draw_wait = true;
}
// self.draw_hires handles both hi-res mode and drawing 16x16 sprites
if self.flags.draw_mode || n == 0 {
self.draw_hires(x, y, n, bus);
} else {
self.draw_lores(x, y, n, bus);
}
}
#[inline(always)]
fn draw_lores(&mut self, x: Reg, y: Reg, n: Nib, bus: &mut Bus) {
self.draw_sprite(self.v[x] as u16 % 64, self.v[y] as u16 % 32, n, 64, 32, bus);
}
#[inline(always)]
fn draw_sprite(&mut self, x: u16, y: u16, n: Nib, w: u16, h: u16, bus: &mut Bus) {
let w_bytes = w / 8;
self.v[0xf] = 0;
if let Some(sprite) = bus.get(self.i as usize..(self.i + n as u16) as usize) {
let sprite = sprite.to_vec();
for (line, &sprite) in sprite.iter().enumerate() {
let line = line as u16;
if y + line >= h {
break;
}
let sprite = (sprite as u16) << (8 - (x % 8))
& if (x % w) >= (w - 8) { 0xff00 } else { 0xffff };
let addr = |x, y| -> u16 { (y + line) * w_bytes + (x / 8) + self.screen };
let screen: u16 = bus.read(addr(x, y));
bus.write(addr(x, y), screen ^ sprite);
if screen & sprite != 0 {
self.v[0xf] = 1;
}
}
}
}
}
// |`Exbb`| Skips instruction on value of keypress
//
// |opcode| effect |
// |------|------------------------------------|
// |`eX9e`| Skip next instruction if key == vX |
// |`eXa1`| Skip next instruction if key != vX |
impl CPU {
/// |`Ex9E`| Skip next instruction if key == vX
#[inline(always)]
fn skip_key_equals(&mut self, x: Reg) {
if self.keys[self.v[x] as usize & 0xf] {
self.pc += 2;
}
}
/// |`ExaE`| Skip next instruction if key != vX
#[inline(always)]
fn skip_key_not_equals(&mut self, x: Reg) {
if !self.keys[self.v[x] as usize & 0xf] {
self.pc += 2;
}
}
}
// |`Fxbb`| Performs IO
//
// |opcode| effect |
// |------|------------------------------------|
// |`fX07`| Set vX to value in delay timer |
// |`fX0a`| Wait for input, store key in vX |
// |`fX15`| Set sound timer to the value in vX |
// |`fX18`| set delay timer to the value in vX |
// |`fX1e`| Add vX to I |
// |`fX29`| Load sprite for character x into I |
// |`fX33`| BCD convert X into I[0..3] |
// |`fX55`| DMA Stor from I to registers 0..=X |
// |`fX65`| DMA Load from I to registers 0..=X |
impl CPU {
/// |`Fx07`| Get the current DT, and put it in vX
/// ```py
/// vX = DT
/// ```
#[inline(always)]
fn load_delay_timer(&mut self, x: Reg) {
self.v[x] = self.delay as u8;
}
/// |`Fx0A`| Wait for key, then vX = K
#[inline(always)]
fn wait_for_key(&mut self, x: Reg) {
if let Some(key) = self.flags.lastkey {
self.v[x] = key as u8;
self.flags.lastkey = None;
} else {
self.pc = self.pc.wrapping_sub(2);
self.flags.keypause = true;
}
}
/// |`Fx15`| Load vX into DT
/// ```py
/// DT = vX
/// ```
#[inline(always)]
fn store_delay_timer(&mut self, x: Reg) {
self.delay = self.v[x] as f64;
}
/// |`Fx18`| Load vX into ST
/// ```py
/// ST = vX;
/// ```
#[inline(always)]
fn store_sound_timer(&mut self, x: Reg) {
self.sound = self.v[x] as f64;
}
/// |`Fx1e`| Add vX to I,
/// ```py
/// I += vX;
/// ```
#[inline(always)]
fn add_i(&mut self, x: Reg) {
self.i += self.v[x] as u16;
}
/// |`Fx29`| Load sprite for character x into I
/// ```py
/// I = sprite(X);
/// ```
#[inline(always)]
fn load_sprite(&mut self, x: Reg) {
self.i = self.font + (5 * (self.v[x] as Adr % 0x10));
}
/// |`Fx33`| BCD convert X into I`[0..3]`
#[inline(always)]
fn bcd_convert(&mut self, x: Reg, bus: &mut Bus) {
let x = self.v[x];
bus.write(self.i.wrapping_add(2), x % 10);
bus.write(self.i.wrapping_add(1), x / 10 % 10);
bus.write(self.i, x / 100 % 10);
}
/// |`Fx55`| DMA Stor from I to registers 0..=X
///
/// # Quirk
/// The original chip-8 interpreter uses I to directly index memory,
/// with the side effect of leaving I as I+X+1 after the transfer is done.
#[inline(always)]
fn store_dma(&mut self, x: Reg, bus: &mut Bus) {
let i = self.i as usize;
for (reg, value) in bus
.get_mut(i..=i + x)
.unwrap_or_default()
.iter_mut()
.enumerate()
{
*value = self.v[reg]
}
if !self.flags.quirks.dma_inc {
self.i += x as Adr + 1;
}
}
/// |`Fx65`| DMA Load from I to registers 0..=X
///
/// # Quirk
/// The original chip-8 interpreter uses I to directly index memory,
/// with the side effect of leaving I as I+X+1 after the transfer is done.
#[inline(always)]
fn load_dma(&mut self, x: Reg, bus: &mut Bus) {
let i = self.i as usize;
for (reg, value) in bus.get(i..=i + x).unwrap_or_default().iter().enumerate() {
self.v[reg] = *value;
}
if !self.flags.quirks.dma_inc {
self.i += x as Adr + 1;
}
}
}
//////////////// SUPER CHIP ////////////////
impl CPU {
/// |`00cN`| Scroll the screen down N lines
#[inline(always)]
fn scroll_down(&mut self, n: Nib, bus: &mut Bus) {
match self.flags.draw_mode {
true => {
// Get a line from the bus
for i in (0..16 * (64 - n as usize)).step_by(16).rev() {
let i = i + self.screen as usize;
let line: u128 = bus.read(i);
bus.write(i - (n as usize * 16), 0u128);
bus.write(i, line);
}
}
false => {
// Get a line from the bus
for i in (0..8 * (32 - n as usize)).step_by(8).rev() {
let i = i + self.screen as usize;
let line: u64 = bus.read(i);
bus.write(i, 0u64);
bus.write(i + (n as usize * 8), line);
}
}
}
}
/// |`00fb`| Scroll the screen right
#[inline(always)]
fn scroll_right(&mut self, bus: &mut (impl Read<u128> + Write<u128>)) {
// Get a line from the bus
for i in (0..16 * 64).step_by(16) {
//let line: u128 = bus.read(self.screen + i) >> 4;
bus.write(self.screen + i, bus.read(self.screen + i) >> 4);
}
}
/// |`00fc`| Scroll the screen right
#[inline(always)]
fn scroll_left(&mut self, bus: &mut (impl Read<u128> + Write<u128>)) {
// Get a line from the bus
for i in (0..16 * 64).step_by(16) {
let line: u128 = (bus.read(self.screen + i) & !(0xf << 124)) << 4;
bus.write(self.screen + i, line);
}
}
/// |`Dxyn`|
/// Super-Chip extension high-resolution graphics mode
#[inline(always)]
fn draw_hires(&mut self, x: Reg, y: Reg, n: Nib, bus: &mut Bus) {
if !self.flags.quirks.draw_wait {
self.flags.draw_wait = true;
}
let (w, h) = match self.flags.draw_mode {
true => (128, 64),
false => (64, 32),
};
let (x, y) = (self.v[x] as u16 % w, self.v[y] as u16 % h);
match n {
0 => self.draw_schip_sprite(x, y, w, bus),
_ => self.draw_sprite(x, y, n, w, h, bus),
}
}
/// Draws a 16x16 Super Chip sprite
#[inline(always)]
fn draw_schip_sprite(&mut self, x: u16, y: u16, w: u16, bus: &mut Bus) {
self.v[0xf] = 0;
let w_bytes = w / 8;
if let Some(sprite) = bus.get(self.i as usize..(self.i + 32) as usize) {
let sprite = sprite.to_owned();
for (line, sprite) in sprite.chunks(2).enumerate() {
let sprite = u16::from_be_bytes(
sprite
.try_into()
.expect("Chunks should only return 2 bytes"),
);
let addr = (y + line as u16) * w_bytes + x / 8 + self.screen;
let sprite = (sprite as u32) << (16 - (x % 8));
let screen: u32 = bus.read(addr);
bus.write(addr, screen ^ sprite);
if screen & sprite != 0 {
self.v[0xf] += 1;
}
}
}
}
/// |`Fx30`| (Super-Chip) 16x16 equivalent of Fx29
///
/// TODO: Actually make and import the 16x font
#[inline(always)]
fn load_big_sprite(&mut self, x: Reg) {
self.i = self.font + (5 * 8) + (16 * (self.v[x] as Adr % 0x10));
}
/// |`Fx75`| (Super-Chip) Save to "flag registers"
/// I just chuck it in 0x0..0xf. Screw it.
#[inline(always)]
fn store_flags(&mut self, x: Reg, bus: &mut Bus) {
// TODO: Save these, maybe
for (reg, value) in bus
.get_mut(0..=x)
.unwrap_or_default()
.iter_mut()
.enumerate()
{
*value = self.v[reg]
}
}
/// |`Fx85`| (Super-Chip) Load from "flag registers"
/// I just chuck it in 0x0..0xf. Screw it.
#[inline(always)]
fn load_flags(&mut self, x: Reg, bus: &mut Bus) {
for (reg, value) in bus.get(0..=x).unwrap_or_default().iter().enumerate() {
self.v[reg] = *value;
}
}
/// Initialize lores mode
fn init_lores(&mut self, bus: &mut Bus) {
self.flags.draw_mode = false;
let scraddr = self.screen as usize;
bus.set_region(Region::Screen, scraddr..scraddr + 256);
self.clear_screen(bus);
}
/// Initialize hires mode
fn init_hires(&mut self, bus: &mut Bus) {
self.flags.draw_mode = true;
let scraddr = self.screen as usize;
bus.set_region(Region::Screen, scraddr..scraddr + 1024);
self.clear_screen(bus);
}
}

58
src/cpu/flags.rs Normal file
View File

@ -0,0 +1,58 @@
//! Represents flags that aid in implementation but aren't a part of the Chip-8 spec
use super::{Mode, Quirks};
/// Represents flags that aid in operation, but aren't inherent to the CPU
#[derive(Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Flags {
/// Set when debug (live disassembly) mode enabled
pub debug: bool,
/// Set when the emulator is paused by the user and should not update
pub pause: bool,
/// Set when the emulator is waiting for a keypress
pub keypause: bool,
/// Set when the emulator is waiting for a frame to be drawn
pub draw_wait: bool,
/// Set when the emulator is in high-res mode
pub draw_mode: bool,
/// Set to the last key that's been *released* after a keypause
pub lastkey: Option<usize>,
/// Represents the current emulator [Mode]
pub mode: Mode,
/// Represents the set of emulator [Quirks] to enable, independent of the [Mode]
pub quirks: Quirks,
/// Represents the number of instructions to run per tick of the internal timer
pub monotonic: Option<usize>,
}
impl Flags {
/// Toggles debug mode
///
/// # Examples
/// ```rust
/// # use chirp::*;
/// let mut cpu = CPU::default();
/// assert_eq!(true, cpu.flags.debug);
/// // Toggle debug mode
/// cpu.flags.debug();
/// assert_eq!(false, cpu.flags.debug);
/// ```
pub fn debug(&mut self) {
self.debug = !self.debug
}
/// Toggles pause
///
/// # Examples
/// ```rust
/// # use chirp::*;
/// let mut cpu = CPU::default();
/// assert_eq!(false, cpu.flags.pause);
/// // Pause the cpu
/// cpu.flags.pause();
/// assert_eq!(true, cpu.flags.pause);
/// ```
pub fn pause(&mut self) {
self.pause = !self.pause
}
}

View File

@ -1,235 +1,625 @@
// (c) 2023 John A. Breaux
// This code is licensed under MIT license (see LICENSE.txt for details)
//! Represents a chip-8 instruction as a Rust enum
//! Contains implementations for each instruction defined in [super::disassembler]
use super::{Adr, Nib, Reg};
type Word = Adr;
type Byte = u8;
type Ins = Nib;
use super::*;
/// Extract the instruction nibble from a word
#[inline]
pub fn i(ins: Word) -> Ins {
(ins >> 12) as Ins & 0xf
}
/// Extracts the X-register nibble from a word
#[inline]
pub fn x(ins: Word) -> Reg {
ins as Reg >> 8 & 0xf
}
/// Extracts the Y-register nibble from a word
#[inline]
pub fn y(ins: u16) -> Reg {
ins as Reg >> 4 & 0xf
}
/// Extracts the nibble-sized immediate from a word
#[inline]
pub fn n(ins: Word) -> Nib {
ins as Nib & 0xf
}
/// Extracts the byte-sized immediate from a word
#[inline]
pub fn b(ins: Word) -> Byte {
ins as Byte
}
/// Extracts the address-sized immediate from a word
#[inline]
pub fn a(ins: Word) -> Adr {
ins & 0x0fff
}
/// Restores the instruction nibble into a word
#[inline]
pub fn ii(i: Ins) -> u16 {
(i as Word & 0xf) << 12
}
/// Restores the X-register nibble into a word
#[inline]
pub fn xi(x: Reg) -> Word {
(x as Word & 0xf) << 8
}
/// Restores the Y-register nibble into a word
#[inline]
pub fn yi(y: Reg) -> Word {
(y as Word & 0xf) << 4
}
/// Restores the nibble-sized immediate into a word
#[inline]
pub fn ni(n: Nib) -> Word {
n as Word & 0xf
}
/// Restores the byte-sized immediate into a word
#[inline]
pub fn bi(b: Byte) -> Word {
b as Word
}
/// Captures the operand and type of a Chip-8 instruction
pub enum Chip8Instruction {
Unimplemented(Word),
Clear,
Return,
Sys(Adr),
Jump(Adr),
Call(Adr),
SkipEqualsByte(Reg, Byte),
SkipNotEqualsByte(Reg, Byte),
SkipEquals(Reg, Reg),
LoadImmediate(Reg, Byte),
AddImmediate(Reg, Byte),
Copy(Reg, Reg),
Or(Reg, Reg),
And(Reg, Reg),
Xor(Reg, Reg),
Add(Reg, Reg),
Sub(Reg, Reg),
ShiftRight(Reg, Reg),
BackwardsSub(Reg, Reg),
ShiftLeft(Reg, Reg),
SkipNotEquals(Reg, Reg),
LoadIndirect(Adr),
JumpIndexed(Adr),
Rand(Reg, Byte),
Draw(Reg, Reg, Nib),
SkipEqualsKey(Reg),
SkipNotEqualsKey(Reg),
StoreDelay(Reg),
WaitForKey(Reg),
LoadDelay(Reg),
LoadSound(Reg),
AddIndirect(Reg),
LoadSprite(Reg),
BcdConvert(Reg),
DmaStore(Reg),
DmaLoad(Reg),
}
impl TryFrom<Word> for Chip8Instruction {
type Error = crate::error::Error;
/// Converts a 16-bit word into a Chip8Instruction, when possible.
fn try_from(opcode: Word) -> Result<Self, Self::Error> {
use crate::error::Error::*;
let (i, x, y, n, b, a) = (
i(opcode),
x(opcode),
y(opcode),
n(opcode),
b(opcode),
a(opcode),
);
if i > 0xf {
return Err(FunkyMath {
word: opcode,
explanation: "Instruction nibble greater than 0xf".into(),
});
impl CPU {
/// Executes a single [Insn]
#[inline(always)]
#[rustfmt::skip]
pub(super) fn execute(&mut self, bus: &mut Bus, instruction: Insn) {
match instruction {
// Core Chip-8 instructions
Insn::cls => self.clear_screen(bus),
Insn::ret => self.ret(bus),
Insn::jmp { A } => self.jump(A),
Insn::call { A } => self.call(A, bus),
Insn::seb { x, B } => self.skip_equals_immediate(x, B),
Insn::sneb { x, B } => self.skip_not_equals_immediate(x, B),
Insn::se { y, x } => self.skip_equals(x, y),
Insn::movb { x, B } => self.load_immediate(x, B),
Insn::addb { x, B } => self.add_immediate(x, B),
Insn::mov { y, x } => self.load(x, y),
Insn::or { y, x } => self.or(x, y),
Insn::and { y, x } => self.and(x, y),
Insn::xor { y, x } => self.xor(x, y),
Insn::add { y, x } => self.add(x, y),
Insn::sub { y, x } => self.sub(x, y),
Insn::shr { y, x } => self.shift_right(x, y),
Insn::bsub { y, x } => self.backwards_sub(x, y),
Insn::shl { y, x } => self.shift_left(x, y),
Insn::sne { y, x } => self.skip_not_equals(x, y),
Insn::movI { A } => self.load_i_immediate(A),
Insn::jmpr { A } => self.jump_indexed(A),
Insn::rand { x, B } => self.rand(x, B),
Insn::draw { y, x, n } => self.draw(x, y, n, bus),
Insn::sek { x } => self.skip_key_equals(x),
Insn::snek { x } => self.skip_key_not_equals(x),
Insn::getdt { x } => self.load_delay_timer(x),
Insn::waitk { x } => self.wait_for_key(x),
Insn::setdt { x } => self.store_delay_timer(x),
Insn::movst { x } => self.store_sound_timer(x),
Insn::addI { x } => self.add_i(x),
Insn::font { x } => self.load_sprite(x),
Insn::bcd { x } => self.bcd_convert(x, bus),
Insn::dmao { x } => self.store_dma(x, bus),
Insn::dmai { x } => self.load_dma(x, bus),
// Super-Chip extensions
Insn::scd { n } => self.scroll_down(n, bus),
Insn::scr => self.scroll_right(bus),
Insn::scl => self.scroll_left(bus),
Insn::halt => self.flags.pause(),
Insn::lores => self.init_lores(bus),
Insn::hires => self.init_hires(bus),
Insn::hfont { x } => self.load_big_sprite(x),
Insn::flgo { x } => self.store_flags(x, bus),
Insn::flgi { x } => self.load_flags(x, bus),
}
Ok(match i {
// # Issue a system call
// |opcode| effect |
// |------|------------------------------------|
// | 00e0 | Clear screen memory to all 0 |
// | 00ee | Return from subroutine |
0x0 => match a {
0xe0 => Self::Clear,
0xee => Self::Return,
_ => Self::Sys(a),
},
// | 1aaa | Sets pc to an absolute address
0x1 => Self::Jump(a),
// | 2aaa | Pushes pc onto the stack, then jumps to a
0x2 => Self::Call(a),
// | 3xbb | Skips next instruction if register X == b
0x3 => Self::SkipEqualsByte(x, b),
// | 4xbb | Skips next instruction if register X != b
0x4 => Self::SkipNotEqualsByte(x, b),
// # Performs a register-register comparison
// |opcode| effect |
// |------|------------------------------------|
// | 9XY0 | Skip next instruction if vX == vY |
0x5 => match n {
0x0 => Self::SkipEquals(x, y),
_ => Self::Unimplemented(opcode),
},
// 6xbb: Loads immediate byte b into register vX
0x6 => Self::LoadImmediate(x, b),
// 7xbb: Adds immediate byte b to register vX
0x7 => Self::AddImmediate(x, b),
// # Performs ALU operation
// |opcode| effect |
// |------|------------------------------------|
// | 8xy0 | X = Y |
// | 8xy1 | X = X | Y |
// | 8xy2 | X = X & Y |
// | 8xy3 | X = X ^ Y |
// | 8xy4 | X = X + Y; Set vF=carry |
// | 8xy5 | X = X - Y; Set vF=carry |
// | 8xy6 | X = X >> 1 |
// | 8xy7 | X = Y - X; Set vF=carry |
// | 8xyE | X = X << 1 |
0x8 => match n {
0x0 => Self::Copy(x, y),
0x1 => Self::Or(x, y),
0x2 => Self::And(x, y),
0x3 => Self::Xor(x, y),
0x4 => Self::Add(x, y),
0x5 => Self::Sub(x, y),
0x6 => Self::ShiftRight(x, y),
0x7 => Self::BackwardsSub(x, y),
0xE => Self::ShiftLeft(x, y),
_ => Self::Unimplemented(opcode),
},
// # Performs a register-register comparison
// |opcode| effect |
// |------|------------------------------------|
// | 9XY0 | Skip next instruction if vX != vY |
0x9 => match n {
0 => Self::SkipNotEquals(x, y),
_ => Self::Unimplemented(opcode),
},
// Aaaa: Load address #a into register I
0xa => Self::LoadIndirect(a),
// Baaa: Jump to &adr + v0
0xb => Self::JumpIndexed(a),
// Cxbb: Stores a random number & the provided byte into vX
0xc => Self::Rand(x, b),
// Dxyn: Draws n-byte sprite to the screen at coordinates (vX, vY)
0xd => Self::Draw(x, y, n),
// # Skips instruction on value of keypress
// |opcode| effect |
// |------|------------------------------------|
// | eX9e | Skip next instruction if key == #X |
// | eXa1 | Skip next instruction if key != #X |
0xe => match b {
0x9e => Self::SkipEqualsKey(x),
0xa1 => Self::SkipNotEqualsKey(x),
_ => Self::Unimplemented(opcode),
},
// # Performs IO
// |opcode| effect |
// |------|------------------------------------|
// | fX07 | Set vX to value in delay timer |
// | fX0a | Wait for input, store in vX m |
// | fX15 | Set sound timer to the value in vX |
// | fX18 | set delay timer to the value in vX |
// | fX1e | Add x to I |
// | fX29 | Load sprite for character x into I |
// | fX33 | BCD convert X into I[0..3] |
// | fX55 | DMA Stor from I to registers 0..X |
// | fX65 | DMA Load from I to registers 0..X |
0xf => match b {
0x07 => Self::StoreDelay(x),
0x0A => Self::WaitForKey(x),
0x15 => Self::LoadDelay(x),
0x18 => Self::LoadSound(x),
0x1E => Self::AddIndirect(x),
0x29 => Self::LoadSprite(x),
0x33 => Self::BcdConvert(x),
0x55 => Self::DmaStore(x),
0x65 => Self::DmaLoad(x),
_ => Self::Unimplemented(opcode),
},
_ => unreachable!("i somehow mutated from <= 0xf to > 0xf"),
})
}
}
// |`0aaa`| Issues a "System call" (ML routine)
//
// |opcode| effect |
// |------|------------------------------------|
// |`00e0`| Clear screen memory to all 0 |
// |`00ee`| Return from subroutine |
impl CPU {
/// |`00e0`| Clears the screen memory to 0
#[inline(always)]
pub(super) fn clear_screen(&mut self, bus: &mut Bus) {
bus.clear_region(Region::Screen);
}
/// |`00ee`| Returns from subroutine
#[inline(always)]
pub(super) fn ret(&mut self, bus: &impl Read<u16>) {
self.sp = self.sp.wrapping_add(2);
self.pc = bus.read(self.sp);
}
}
// |`1aaa`| Sets pc to an absolute address
impl CPU {
/// |`1aaa`| Sets the program counter to an absolute address
#[inline(always)]
pub(super) fn jump(&mut self, a: Adr) {
// jump to self == halt
if a.wrapping_add(2) == self.pc {
self.flags.pause = true;
}
self.pc = a;
}
}
// |`2aaa`| Pushes pc onto the stack, then jumps to a
impl CPU {
/// |`2aaa`| Pushes pc onto the stack, then jumps to a
#[inline(always)]
pub(super) fn call(&mut self, a: Adr, bus: &mut impl Write<u16>) {
bus.write(self.sp, self.pc);
self.sp = self.sp.wrapping_sub(2);
self.pc = a;
}
}
// |`3xbb`| Skips next instruction if register X == b
impl CPU {
/// |`3xbb`| Skips the next instruction if register X == b
#[inline(always)]
pub(super) fn skip_equals_immediate(&mut self, x: Reg, b: u8) {
if self.v[x] == b {
self.pc = self.pc.wrapping_add(2);
}
}
}
// |`4xbb`| Skips next instruction if register X != b
impl CPU {
/// |`4xbb`| Skips the next instruction if register X != b
#[inline(always)]
pub(super) fn skip_not_equals_immediate(&mut self, x: Reg, b: u8) {
if self.v[x] != b {
self.pc = self.pc.wrapping_add(2);
}
}
}
// |`5xyn`| Performs a register-register comparison
//
// |opcode| effect |
// |------|------------------------------------|
// |`5XY0`| Skip next instruction if vX == vY |
impl CPU {
/// |`5xy0`| Skips the next instruction if register X != register Y
#[inline(always)]
pub(super) fn skip_equals(&mut self, x: Reg, y: Reg) {
if self.v[x] == self.v[y] {
self.pc = self.pc.wrapping_add(2);
}
}
}
// |`6xbb`| Loads immediate byte b into register vX
impl CPU {
/// |`6xbb`| Loads immediate byte b into register vX
#[inline(always)]
pub(super) fn load_immediate(&mut self, x: Reg, b: u8) {
self.v[x] = b;
}
}
// |`7xbb`| Adds immediate byte b to register vX
impl CPU {
/// |`7xbb`| Adds immediate byte b to register vX
#[inline(always)]
pub(super) fn add_immediate(&mut self, x: Reg, b: u8) {
self.v[x] = self.v[x].wrapping_add(b);
}
}
// |`8xyn`| Performs ALU operation
//
// |opcode| effect |
// |------|------------------------------------|
// |`8xy0`| Y = X |
// |`8xy1`| X = X | Y |
// |`8xy2`| X = X & Y |
// |`8xy3`| X = X ^ Y |
// |`8xy4`| X = X + Y; Set vF=carry |
// |`8xy5`| X = X - Y; Set vF=carry |
// |`8xy6`| X = X >> 1 |
// |`8xy7`| X = Y - X; Set vF=carry |
// |`8xyE`| X = X << 1 |
impl CPU {
/// |`8xy0`| Loads the value of y into x
#[inline(always)]
pub(super) fn load(&mut self, x: Reg, y: Reg) {
self.v[x] = self.v[y];
}
/// |`8xy1`| Performs bitwise or of vX and vY, and stores the result in vX
///
/// # Quirk
/// The original chip-8 interpreter will clobber vF for any 8-series instruction
#[inline(always)]
pub(super) fn or(&mut self, x: Reg, y: Reg) {
self.v[x] |= self.v[y];
if !self.flags.quirks.bin_ops {
self.v[0xf] = 0;
}
}
/// |`8xy2`| Performs bitwise and of vX and vY, and stores the result in vX
///
/// # Quirk
/// The original chip-8 interpreter will clobber vF for any 8-series instruction
#[inline(always)]
pub(super) fn and(&mut self, x: Reg, y: Reg) {
self.v[x] &= self.v[y];
if !self.flags.quirks.bin_ops {
self.v[0xf] = 0;
}
}
/// |`8xy3`| Performs bitwise xor of vX and vY, and stores the result in vX
///
/// # Quirk
/// The original chip-8 interpreter will clobber vF for any 8-series instruction
#[inline(always)]
pub(super) fn xor(&mut self, x: Reg, y: Reg) {
self.v[x] ^= self.v[y];
if !self.flags.quirks.bin_ops {
self.v[0xf] = 0;
}
}
/// |`8xy4`| Performs addition of vX and vY, and stores the result in vX
#[inline(always)]
pub(super) fn add(&mut self, x: Reg, y: Reg) {
let carry;
(self.v[x], carry) = self.v[x].overflowing_add(self.v[y]);
self.v[0xf] = carry.into();
}
/// |`8xy5`| Performs subtraction of vX and vY, and stores the result in vX
#[inline(always)]
pub(super) fn sub(&mut self, x: Reg, y: Reg) {
let carry;
(self.v[x], carry) = self.v[x].overflowing_sub(self.v[y]);
self.v[0xf] = (!carry).into();
}
/// |`8xy6`| Performs bitwise right shift of vX
///
/// # Quirk
/// On the original chip-8 interpreter, this shifts vY and stores the result in vX
#[inline(always)]
pub(super) fn shift_right(&mut self, x: Reg, y: Reg) {
let src: Reg = if self.flags.quirks.shift { x } else { y };
let shift_out = self.v[src] & 1;
self.v[x] = self.v[src] >> 1;
self.v[0xf] = shift_out;
}
/// |`8xy7`| Performs subtraction of vY and vX, and stores the result in vX
#[inline(always)]
pub(super) fn backwards_sub(&mut self, x: Reg, y: Reg) {
let carry;
(self.v[x], carry) = self.v[y].overflowing_sub(self.v[x]);
self.v[0xf] = (!carry).into();
}
/// 8X_E: Performs bitwise left shift of vX
///
/// # Quirk
/// On the original chip-8 interpreter, this would perform the operation on vY
/// and store the result in vX. This behavior was left out, for now.
#[inline(always)]
pub(super) fn shift_left(&mut self, x: Reg, y: Reg) {
let src: Reg = if self.flags.quirks.shift { x } else { y };
let shift_out: u8 = self.v[src] >> 7;
self.v[x] = self.v[src] << 1;
self.v[0xf] = shift_out;
}
}
// |`9xyn`| Performs a register-register comparison
//
// |opcode| effect |
// |------|------------------------------------|
// |`9XY0`| Skip next instruction if vX != vY |
impl CPU {
/// |`9xy0`| Skip next instruction if X != y
#[inline(always)]
pub(super) fn skip_not_equals(&mut self, x: Reg, y: Reg) {
if self.v[x] != self.v[y] {
self.pc = self.pc.wrapping_add(2);
}
}
}
// |`Aaaa`| Load address #a into register I
impl CPU {
/// |`Aadr`| Load address #adr into register I
#[inline(always)]
pub(super) fn load_i_immediate(&mut self, a: Adr) {
self.i = a;
}
}
// |`Baaa`| Jump to &adr + v0
impl CPU {
/// |`Badr`| Jump to &adr + v0
///
/// Quirk:
/// On the Super-Chip, this does stupid shit
#[inline(always)]
pub(super) fn jump_indexed(&mut self, a: Adr) {
let reg = if self.flags.quirks.stupid_jumps {
a as usize >> 8
} else {
0
};
self.pc = a.wrapping_add(self.v[reg] as Adr);
}
}
// |`Cxbb`| Stores a random number & the provided byte into vX
impl CPU {
/// |`Cxbb`| Stores a random number & the provided byte into vX
#[inline(always)]
pub(super) fn rand(&mut self, x: Reg, b: u8) {
self.v[x] = random::<u8>() & b;
}
}
// |`Dxyn`| Draws n-byte sprite to the screen at coordinates (vX, vY)
impl CPU {
/// |`Dxyn`| Draws n-byte sprite to the screen at coordinates (vX, vY)
///
/// # Quirk
/// On the original chip-8 interpreter, this will wait for a VBI
#[inline(always)]
pub(super) fn draw(&mut self, x: Reg, y: Reg, n: Nib, bus: &mut Bus) {
if !self.flags.quirks.draw_wait {
self.flags.draw_wait = true;
}
// self.draw_hires handles both hi-res mode and drawing 16x16 sprites
if self.flags.draw_mode || n == 0 {
self.draw_hires(x, y, n, bus);
} else {
self.draw_lores(x, y, n, bus);
}
}
#[inline(always)]
pub(super) fn draw_lores(&mut self, x: Reg, y: Reg, n: Nib, bus: &mut Bus) {
self.draw_sprite(self.v[x] as u16 % 64, self.v[y] as u16 % 32, n, 64, 32, bus);
}
#[inline(always)]
pub(super) fn draw_sprite(&mut self, x: u16, y: u16, n: Nib, w: u16, h: u16, bus: &mut Bus) {
let w_bytes = w / 8;
self.v[0xf] = 0;
if let Some(sprite) = bus.get(self.i as usize..(self.i + n as u16) as usize) {
let sprite = sprite.to_vec();
for (line, &sprite) in sprite.iter().enumerate() {
let line = line as u16;
if y + line >= h {
break;
}
let sprite = (sprite as u16) << (8 - (x % 8))
& if (x % w) >= (w - 8) { 0xff00 } else { 0xffff };
let addr = |x, y| -> u16 { (y + line) * w_bytes + (x / 8) + self.screen };
let screen: u16 = bus.read(addr(x, y));
bus.write(addr(x, y), screen ^ sprite);
if screen & sprite != 0 {
self.v[0xf] = 1;
}
}
}
}
}
// |`Exbb`| Skips instruction on value of keypress
//
// |opcode| effect |
// |------|------------------------------------|
// |`eX9e`| Skip next instruction if key == vX |
// |`eXa1`| Skip next instruction if key != vX |
impl CPU {
/// |`Ex9E`| Skip next instruction if key == vX
#[inline(always)]
pub(super) fn skip_key_equals(&mut self, x: Reg) {
if self.keys[self.v[x] as usize & 0xf] {
self.pc += 2;
}
}
/// |`ExaE`| Skip next instruction if key != vX
#[inline(always)]
pub(super) fn skip_key_not_equals(&mut self, x: Reg) {
if !self.keys[self.v[x] as usize & 0xf] {
self.pc += 2;
}
}
}
// |`Fxbb`| Performs IO
//
// |opcode| effect |
// |------|------------------------------------|
// |`fX07`| Set vX to value in delay timer |
// |`fX0a`| Wait for input, store key in vX |
// |`fX15`| Set sound timer to the value in vX |
// |`fX18`| set delay timer to the value in vX |
// |`fX1e`| Add vX to I |
// |`fX29`| Load sprite for character x into I |
// |`fX33`| BCD convert X into I[0..3] |
// |`fX55`| DMA Stor from I to registers 0..=X |
// |`fX65`| DMA Load from I to registers 0..=X |
impl CPU {
/// |`Fx07`| Get the current DT, and put it in vX
/// ```py
/// vX = DT
/// ```
#[inline(always)]
pub(super) fn load_delay_timer(&mut self, x: Reg) {
self.v[x] = self.delay as u8;
}
/// |`Fx0A`| Wait for key, then vX = K
#[inline(always)]
pub(super) fn wait_for_key(&mut self, x: Reg) {
if let Some(key) = self.flags.lastkey {
self.v[x] = key as u8;
self.flags.lastkey = None;
} else {
self.pc = self.pc.wrapping_sub(2);
self.flags.keypause = true;
}
}
/// |`Fx15`| Load vX into DT
/// ```py
/// DT = vX
/// ```
#[inline(always)]
pub(super) fn store_delay_timer(&mut self, x: Reg) {
self.delay = self.v[x] as f64;
}
/// |`Fx18`| Load vX into ST
/// ```py
/// ST = vX;
/// ```
#[inline(always)]
pub(super) fn store_sound_timer(&mut self, x: Reg) {
self.sound = self.v[x] as f64;
}
/// |`Fx1e`| Add vX to I,
/// ```py
/// I += vX;
/// ```
#[inline(always)]
pub(super) fn add_i(&mut self, x: Reg) {
self.i += self.v[x] as u16;
}
/// |`Fx29`| Load sprite for character x into I
/// ```py
/// I = sprite(X);
/// ```
#[inline(always)]
pub(super) fn load_sprite(&mut self, x: Reg) {
self.i = self.font + (5 * (self.v[x] as Adr % 0x10));
}
/// |`Fx33`| BCD convert X into I`[0..3]`
#[inline(always)]
pub(super) fn bcd_convert(&mut self, x: Reg, bus: &mut Bus) {
let x = self.v[x];
bus.write(self.i.wrapping_add(2), x % 10);
bus.write(self.i.wrapping_add(1), x / 10 % 10);
bus.write(self.i, x / 100 % 10);
}
/// |`Fx55`| DMA Stor from I to registers 0..=X
///
/// # Quirk
/// The original chip-8 interpreter uses I to directly index memory,
/// with the side effect of leaving I as I+X+1 after the transfer is done.
#[inline(always)]
pub(super) fn store_dma(&mut self, x: Reg, bus: &mut Bus) {
let i = self.i as usize;
for (reg, value) in bus
.get_mut(i..=i + x)
.unwrap_or_default()
.iter_mut()
.enumerate()
{
*value = self.v[reg]
}
if !self.flags.quirks.dma_inc {
self.i += x as Adr + 1;
}
}
/// |`Fx65`| DMA Load from I to registers 0..=X
///
/// # Quirk
/// The original chip-8 interpreter uses I to directly index memory,
/// with the side effect of leaving I as I+X+1 after the transfer is done.
#[inline(always)]
pub(super) fn load_dma(&mut self, x: Reg, bus: &mut Bus) {
let i = self.i as usize;
for (reg, value) in bus.get(i..=i + x).unwrap_or_default().iter().enumerate() {
self.v[reg] = *value;
}
if !self.flags.quirks.dma_inc {
self.i += x as Adr + 1;
}
}
}
//////////////// SUPER CHIP ////////////////
impl CPU {
/// |`00cN`| Scroll the screen down N lines
#[inline(always)]
pub(super) fn scroll_down(&mut self, n: Nib, bus: &mut Bus) {
match self.flags.draw_mode {
true => {
// Get a line from the bus
for i in (0..16 * (64 - n as usize)).step_by(16).rev() {
let i = i + self.screen as usize;
let line: u128 = bus.read(i);
bus.write(i - (n as usize * 16), 0u128);
bus.write(i, line);
}
}
false => {
// Get a line from the bus
for i in (0..8 * (32 - n as usize)).step_by(8).rev() {
let i = i + self.screen as usize;
let line: u64 = bus.read(i);
bus.write(i, 0u64);
bus.write(i + (n as usize * 8), line);
}
}
}
}
/// |`00fb`| Scroll the screen right
#[inline(always)]
pub(super) fn scroll_right(&mut self, bus: &mut (impl Read<u128> + Write<u128>)) {
// Get a line from the bus
for i in (0..16 * 64).step_by(16) {
//let line: u128 = bus.read(self.screen + i) >> 4;
bus.write(self.screen + i, bus.read(self.screen + i) >> 4);
}
}
/// |`00fc`| Scroll the screen right
#[inline(always)]
pub(super) fn scroll_left(&mut self, bus: &mut (impl Read<u128> + Write<u128>)) {
// Get a line from the bus
for i in (0..16 * 64).step_by(16) {
let line: u128 = (bus.read(self.screen + i) & !(0xf << 124)) << 4;
bus.write(self.screen + i, line);
}
}
/// |`Dxyn`|
/// Super-Chip extension high-resolution graphics mode
#[inline(always)]
pub(super) fn draw_hires(&mut self, x: Reg, y: Reg, n: Nib, bus: &mut Bus) {
if !self.flags.quirks.draw_wait {
self.flags.draw_wait = true;
}
let (w, h) = match self.flags.draw_mode {
true => (128, 64),
false => (64, 32),
};
let (x, y) = (self.v[x] as u16 % w, self.v[y] as u16 % h);
match n {
0 => self.draw_schip_sprite(x, y, w, bus),
_ => self.draw_sprite(x, y, n, w, h, bus),
}
}
/// Draws a 16x16 Super Chip sprite
#[inline(always)]
pub(super) fn draw_schip_sprite(&mut self, x: u16, y: u16, w: u16, bus: &mut Bus) {
self.v[0xf] = 0;
let w_bytes = w / 8;
if let Some(sprite) = bus.get(self.i as usize..(self.i + 32) as usize) {
let sprite = sprite.to_owned();
for (line, sprite) in sprite.chunks(2).enumerate() {
let sprite = u16::from_be_bytes(
sprite
.try_into()
.expect("Chunks should only return 2 bytes"),
);
let addr = (y + line as u16) * w_bytes + x / 8 + self.screen;
let sprite = (sprite as u32) << (16 - (x % 8));
let screen: u32 = bus.read(addr);
bus.write(addr, screen ^ sprite);
if screen & sprite != 0 {
self.v[0xf] += 1;
}
}
}
}
/// |`Fx30`| (Super-Chip) 16x16 equivalent of Fx29
///
/// TODO: Actually make and import the 16x font
#[inline(always)]
pub(super) fn load_big_sprite(&mut self, x: Reg) {
self.i = self.font + (5 * 8) + (16 * (self.v[x] as Adr % 0x10));
}
/// |`Fx75`| (Super-Chip) Save to "flag registers"
/// I just chuck it in 0x0..0xf. Screw it.
#[inline(always)]
pub(super) fn store_flags(&mut self, x: Reg, bus: &mut Bus) {
// TODO: Save these, maybe
for (reg, value) in bus
.get_mut(0..=x)
.unwrap_or_default()
.iter_mut()
.enumerate()
{
*value = self.v[reg]
}
}
/// |`Fx85`| (Super-Chip) Load from "flag registers"
/// I just chuck it in 0x0..0xf. Screw it.
#[inline(always)]
pub(super) fn load_flags(&mut self, x: Reg, bus: &mut Bus) {
for (reg, value) in bus.get(0..=x).unwrap_or_default().iter().enumerate() {
self.v[reg] = *value;
}
}
/// Initialize lores mode
pub(super) fn init_lores(&mut self, bus: &mut Bus) {
self.flags.draw_mode = false;
let scraddr = self.screen as usize;
bus.set_region(Region::Screen, scraddr..scraddr + 256);
self.clear_screen(bus);
}
/// Initialize hires mode
pub(super) fn init_hires(&mut self, bus: &mut Bus) {
self.flags.draw_mode = true;
let scraddr = self.screen as usize;
bus.set_region(Region::Screen, scraddr..scraddr + 1024);
self.clear_screen(bus);
}
}

31
src/cpu/mode.rs Normal file
View File

@ -0,0 +1,31 @@
//! Selects the memory behavior of the [super::CPU]
use crate::error::Error;
use std::str::FromStr;
/// Selects the memory behavior of the interpreter
#[derive(Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum Mode {
/// VIP emulation mode
#[default]
Chip8,
/// Chip-48 emulation mode
SChip,
/// XO-Chip emulation mode
XOChip,
}
impl FromStr for Mode {
type Err = Error;
fn from_str(s: &str) -> std::result::Result<Self, Self::Err> {
match s.to_lowercase().as_str() {
"chip8" | "chip-8" => Ok(Mode::Chip8),
"schip" | "superchip" => Ok(Mode::SChip),
"xo-chip" | "xochip" => Ok(Mode::XOChip),
_ => Err(Error::InvalidMode {
mode: s.to_string(),
}),
}
}
}

60
src/cpu/quirks.rs Normal file
View File

@ -0,0 +1,60 @@
//! Controls the authenticity behavior of the CPU on a granular level.
use super::Mode;
/// Controls the authenticity behavior of the CPU on a granular level.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Quirks {
/// Binary ops in `8xy`(`1`, `2`, `3`) shouldn't set vF to 0
pub bin_ops: bool,
/// Shift ops in `8xy`(`6`, `E`) shouldn't source from vY instead of vX
pub shift: bool,
/// Draw operations shouldn't pause execution until the next timer tick
pub draw_wait: bool,
/// DMA instructions `Fx55`/`Fx65` shouldn't change I to I + x + 1
pub dma_inc: bool,
/// Indexed jump instructions should go to `adr` + v`a` where `a` is high nibble of `adr`.
pub stupid_jumps: bool,
}
impl From<bool> for Quirks {
fn from(value: bool) -> Self {
if value {
Quirks {
bin_ops: true,
shift: true,
draw_wait: true,
dma_inc: true,
stupid_jumps: true,
}
} else {
Quirks {
bin_ops: false,
shift: false,
draw_wait: false,
dma_inc: false,
stupid_jumps: false,
}
}
}
}
impl From<Mode> for Quirks {
fn from(value: Mode) -> Self {
match value {
Mode::Chip8 => false.into(),
Mode::SChip => true.into(),
Mode::XOChip => Self {
bin_ops: true,
shift: false,
draw_wait: true,
dma_inc: false,
stupid_jumps: false,
},
}
}
}
impl Default for Quirks {
fn default() -> Self {
Self::from(false)
}
}

View File

@ -1,7 +1,7 @@
// (c) 2023 John A. Breaux
// This code is licensed under MIT license (see LICENSE.txt for details)
//! Tests for cpu.rs
//! Unit tests for [super::CPU]
//!
//! These run instructions, and ensure their output is consistent with previous builds
//!
@ -23,7 +23,7 @@ mod decode;
fn setup_environment() -> (CPU, Bus) {
(
CPU {
flags: ControlFlags {
flags: Flags {
debug: true,
pause: false,
monotonic: Some(8),

View File

@ -14,7 +14,7 @@ pub mod error;
// Common imports for Chirp
pub use bus::{Bus, Read, Region::*, Write};
pub use cpu::{disassembler::Dis, ControlFlags, Mode, CPU};
pub use cpu::{disassembler::Dis, flags::Flags, mode::Mode, quirks::Quirks, CPU};
pub use error::Result;
/// Holds the state of a Chip-8

View File

@ -4,7 +4,7 @@ pub use chirp::*;
fn setup_environment() -> (CPU, Bus) {
let mut cpu = CPU::default();
cpu.flags = ControlFlags {
cpu.flags = Flags {
debug: true,
pause: false,
monotonic: Some(8),

View File

@ -126,7 +126,7 @@ mod cpu {
//#[derive(Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[test]
fn clone() {
let cf1 = ControlFlags {
let cf1 = Flags {
debug: false,
pause: false,
keypause: false,
@ -140,13 +140,13 @@ mod cpu {
}
#[test]
fn debug() {
println!("{:?}", ControlFlags::default());
println!("{:?}", Flags::default());
}
#[test]
fn default() {
assert_eq!(
ControlFlags::default(),
ControlFlags {
Flags::default(),
Flags {
debug: false,
pause: false,
keypause: false,
@ -157,8 +157,8 @@ mod cpu {
}
#[test]
fn eq() {
let cf1 = ControlFlags::default();
let cf2 = ControlFlags {
let cf1 = Flags::default();
let cf2 = Flags {
debug: true,
pause: true,
keypause: true,
@ -169,8 +169,8 @@ mod cpu {
}
#[test]
fn ord() {
let cf1 = ControlFlags::default();
let cf2 = ControlFlags {
let cf1 = Flags::default();
let cf2 = Flags {
debug: true,
pause: true,
keypause: true,
@ -178,12 +178,12 @@ mod cpu {
..Default::default()
};
assert!(cf1 < cf2);
assert_eq!(ControlFlags::default(), cf1.min(cf2));
assert_eq!(Flags::default(), cf1.min(cf2));
}
#[test]
fn hash() {
let mut hasher = DefaultHasher::new();
ControlFlags::default().hash(&mut hasher);
Flags::default().hash(&mut hasher);
println!("{:?}", hasher);
}
}
@ -215,7 +215,7 @@ fn error() {
mod quirks {
use super::*;
use chirp::cpu::Quirks;
use chirp::cpu::quirks::Quirks;
#[test]
fn from_true() {