Merge pull request 'v0.1.1 Partial Super Chip Support' (#11) from schip into main

Reviewed-on: #11
This commit is contained in:
John 2023-04-15 04:00:40 +00:00
commit d54fb7eb2c
19 changed files with 1106 additions and 902 deletions

View File

@ -1,17 +1,40 @@
[package]
name = "chirp"
version = "0.1.0"
version = "0.1.1"
edition = "2021"
ignore = ["justfile", ".gitmodules", "chip8-test-suite", "chip8Archive"]
default-run = "chirp"
authors = ["John Breaux"]
license = "MIT"
publish = false
[features]
default = ["unstable"]
default = ["unstable", "drawille", "minifb"]
unstable = []
drawille = ["dep:drawille"]
iced = ["dep:iced"]
minifb = ["dep:minifb"]
rhexdump = ["dep:rhexdump"]
serde = ["dep:serde"]
[[bin]]
name = "chirp"
path = "src/bin/chirp-minifb/main.rs"
required-features = ["minifb"]
[[bin]]
name = "chirp-disasm"
required-features = ["default"]
[[bin]]
name = "chirp-iced"
required-features = ["iced"]
[[bin]]
name = "chirp-shot-viewer"
required-features = ["default", "drawille"]
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[profile.release]
opt-level = 3
@ -26,12 +49,14 @@ overflow-checks = false
[dependencies]
gumdrop = "^0.8.1"
drawille = {version = "0.3.0", optional = true}
iced = {version = "0.8.0", optional = true}
imperative-rs = "0.3.1"
minifb = { version = "^0.24.0", features = ["wayland"] }
owo-colors = "^3"
rand = "^0.8.5"
rhexdump = {version = "^0.1.1", optional = true }
serde = { version = "^1.0", features = ["derive"], optional = true }
minifb = { version = "^0.24.0", optional = true }
gumdrop = "^0.8.1"
imperative-rs = "0.3.1"
owo-colors = "^3"
rand = "^0.8.5"
thiserror = "^1.0.39"

View File

@ -7,21 +7,24 @@ rat:
test:
cargo nextest run
chirp:
cargo run --bin chirp-minifb -- chip8-test-suite/bin/chip8-test-suite.ch8
run rom:
cargo run -- '{{rom}}'
debug rom:
cargo run -- -d '{{rom}}'
# Run at 2100000 instructions per frame, and output per-frame runtime statistics
bench:
cargo run --bin chirp-minifb --release -- chip8Archive/roms/1dcell.ch8 -xP -s10 -S2100000
cargo run --release -- chip8Archive/roms/1dcell.ch8 -Ps10 -S2100000 -m xochip
flame rom:
CARGO_PROFILE_RELEASE_DEBUG=true cargo flamegraph -F 15300 --open --bin chirp-minifb -- '{{rom}}' -s10
flamebench:
CARGO_PROFILE_RELEASE_DEBUG=true cargo flamegraph -F 15300 --open --bin chirp-minifb -- chip8Archive/roms/1dcell.ch8 -xPs10 -S2100000
CARGO_PROFILE_RELEASE_DEBUG=true cargo flamegraph -F 15300 --open --bin chirp-minifb -- chip8Archive/roms/1dcell.ch8 -Ps10 -S2100000 -m xochip
cover:
cargo llvm-cov --open --doctests
tokei:
tokei --exclude tests/chip8-test-suite
tokei --exclude chip8-test-suite --exclude chip8Archive

View File

@ -6,8 +6,9 @@ I don't know!
So I wrote this, to see if i can find out.
## Features:
- 32 * 64 1bpp pixel display, scaled 16x
- 64 * 128 1bpp pixel display, scaled 8x
- Full coverage of the original Chip-8 insn set
- Partial coverage of the Super Chip-8 extension set
- 64-bit floating point internal sound/delay timers
- Pause/Resume
- Set and unset breakpoints
@ -65,6 +66,7 @@ Optional arguments:
## TODO:
- [ ] Move the screen, stack, charset, and program memory into the CPU
- [ ] Implement sound
- [ ] Finish unit tests for "quirks"
- [ ] Make pausing/unpausing the emulator less messy

View File

@ -1,24 +1,8 @@
use chirp::{cpu::Disassembler, error::Result, *};
use chirp::{error::Result, *};
use gumdrop::*;
use owo_colors::OwoColorize;
use std::{fs::read, path::PathBuf};
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Options, Hash)]
struct Arguments {
#[options(help = "Show help text")]
help: bool,
#[options(help = "Load a ROM to run on Chirp", free, required)]
pub file: PathBuf,
#[options(help = "Load address (usually 200)", parse(try_from_str = "parse_hex"))]
pub loadaddr: u16,
#[options(help = "Start disassembling at offset...")]
pub offset: usize,
}
fn parse_hex(value: &str) -> std::result::Result<u16, std::num::ParseIntError> {
u16::from_str_radix(value, 16)
}
fn main() -> Result<()> {
let options = Arguments::parse_args_default_or_exit();
let contents = &read(&options.file)?;
@ -40,3 +24,19 @@ fn main() -> Result<()> {
}
Ok(())
}
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Options, Hash)]
struct Arguments {
#[options(help = "Show help text")]
help: bool,
#[options(help = "Load a ROM to run on Chirp", free, required)]
pub file: PathBuf,
#[options(help = "Load address (usually 200)", parse(try_from_str = "parse_hex"))]
pub loadaddr: u16,
#[options(help = "Start disassembling at offset...")]
pub offset: usize,
}
fn parse_hex(value: &str) -> std::result::Result<u16, std::num::ParseIntError> {
u16::from_str_radix(value, 16)
}

View File

@ -19,6 +19,23 @@ use std::{
};
use ui::*;
pub fn main() -> Result<()> {
let options = Arguments::parse_args_default_or_exit();
let state = State::new(options)?;
for result in state {
if let Err(e) = result {
eprintln!("{}", e.bold().red());
break;
}
}
Ok(())
}
/// Parses a hexadecimal string into a u16
fn parse_hex(value: &str) -> std::result::Result<u16, std::num::ParseIntError> {
u16::from_str_radix(value, 16)
}
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Options, Hash)]
struct Arguments {
#[options(help = "Load a ROM to run on Chirp.", required, free)]
@ -36,6 +53,13 @@ struct Arguments {
pub step: Option<usize>,
#[options(help = "Enable performance benchmarking on stderr (requires -S)")]
pub perf: bool,
#[options(
help = "Run in (Chip8, SChip, XOChip) mode.",
//parse(from_str = "parse_mode")
)]
pub mode: Option<Mode>,
#[options(
short = "z",
help = "Disable setting vF to 0 after a bitwise operation."
@ -62,7 +86,6 @@ struct Arguments {
help = "Use SUPER-CHIP style indexed jump, which is indexed relative to v[adr]."
)]
pub jumping: bool,
#[options(
long = "break",
help = "Set breakpoints for the emulator to stop at.",
@ -116,14 +139,8 @@ impl State {
0xefe,
Dis::default(),
options.breakpoints,
ControlFlags {
quirks: chirp::cpu::Quirks {
bin_ops: options.vfreset,
shift: options.shift,
draw_wait: options.drawsync,
dma_inc: options.memory,
stupid_jumps: options.jumping,
},
Flags {
quirks: options.mode.unwrap_or_default().into(),
debug: options.debug,
pause: options.pause,
monotonic: options.speed,
@ -131,9 +148,15 @@ impl State {
},
),
},
ui: UIBuilder::new(64, 32, &options.file).build()?,
ui: UIBuilder::new(128, 64, &options.file).build()?,
ft: Instant::now(),
};
// Flip the state of the quirks
state.ch8.cpu.flags.quirks.bin_ops ^= options.vfreset;
state.ch8.cpu.flags.quirks.dma_inc ^= options.memory;
state.ch8.cpu.flags.quirks.draw_wait ^= options.drawsync;
state.ch8.cpu.flags.quirks.shift ^= options.shift;
state.ch8.cpu.flags.quirks.stupid_jumps ^= options.jumping;
state.ch8.bus.write(0x1feu16, options.data);
Ok(state)
}
@ -154,9 +177,10 @@ impl State {
let time = time.elapsed();
let nspt = time.as_secs_f64() / ticks as f64;
eprintln!(
"{ticks},\t{time:.05?},\t{:.4}nspt,\t{}ipf",
"{ticks},\t{time:.05?},\t{:.4} nspt,\t{} ipf,\t{} mips",
nspt * 1_000_000_000.0,
((1.0 / 60.0f64) / nspt).trunc(),
(1.0 / nspt).trunc() / 1_000_000.0,
);
}
}
@ -201,20 +225,3 @@ impl Iterator for State {
Some(Ok(()))
}
}
fn main() -> Result<()> {
let options = Arguments::parse_args_default_or_exit();
let state = State::new(options)?;
for result in state {
if let Err(e) = result {
eprintln!("{}", e.bold().red());
break;
}
}
Ok(())
}
/// Parses a hexadecimal string into a u16
fn parse_hex(value: &str) -> std::result::Result<u16, std::num::ParseIntError> {
u16::from_str_radix(value, 16)
}

View File

@ -56,14 +56,14 @@ impl UIBuilder {
impl Default for UIBuilder {
fn default() -> Self {
UIBuilder {
width: 64,
height: 32,
width: 128,
height: 64,
name: Some("Chip-8 Interpreter"),
rom: None,
window_options: WindowOptions {
title: true,
resize: false,
scale: Scale::X16,
scale: Scale::X8,
scale_mode: ScaleMode::AspectRatioStretch,
none: true,
..Default::default()
@ -106,12 +106,24 @@ impl FrameBuffer {
}
pub fn render(&mut self, window: &mut Window, bus: &Bus) -> Result<()> {
if let Some(screen) = bus.get_region(Region::Screen) {
// Resizing the buffer does not unmap memory.
// After the first use of high-res mode, this is pretty cheap
(self.width, self.height) = match screen.len() {
256 => (64, 32),
1024 => (128, 64),
_ => {
unimplemented!("Screen must be 64*32 or 128*64");
}
};
self.buffer.resize(self.width * self.height, 0);
for (idx, byte) in screen.iter().enumerate() {
for bit in 0..8 {
self.buffer[8 * idx + bit] = if byte & (1 << (7 - bit)) as u8 != 0 {
self.format.fg
} else {
self.format.bg
// .wrapping_add(0x001104 * (idx / self.width) as u32)
// .wrapping_add(0x141000 * (idx & 3) as u32)
}
}
}

View File

@ -2,6 +2,9 @@ use chirp::{error::Result, *};
use std::{env::args, fs::read};
fn main() -> Result<()> {
bus! {Screen [0..0x100] = &read(args().nth(1).unwrap_or("screen_dump.bin".to_string()))?}
.print_screen()
for screen in args().skip(1).inspect(|screen| println!("{screen}")) {
let screen = read(screen)?;
bus! {Screen [0..screen.len()] = &screen}.print_screen()?;
}
Ok(())
}

View File

@ -166,6 +166,23 @@ impl Bus {
}
self
}
/// Updates an existing named range (Region)
/// # Examples
/// ```rust
///# use chirp::*;
///# fn main() -> Result<()> {
/// let bus = Bus::new().add_region(Program, 0..1234);
/// assert_eq!(1234, bus.len());
///# Ok(())
///# }
/// ```
pub fn set_region(&mut self, name: Region, range: Range<usize>) -> &mut Self {
self.with_size(range.end);
if let Some(region) = self.region.get_mut(name as usize) {
*region = Some(range);
}
self
}
/// Loads data into a named region
/// # Examples
/// ```rust
@ -307,15 +324,43 @@ impl Bus {
pub fn print_screen(&self) -> Result<()> {
const REGION: Region = Region::Screen;
if let Some(screen) = self.get_region(REGION) {
let len_log2 = screen.len().ilog2() / 2;
#[allow(unused_variables)]
let (width, height) = (2u32.pow(len_log2 - 1), 2u32.pow(len_log2));
// draw with the drawille library, if available
#[cfg(feature = "drawille")]
{
use drawille::Canvas;
let mut canvas = Canvas::new(width * 8, height);
let width = width * 8;
screen
.iter()
.enumerate()
.flat_map(|(bytei, byte)| {
(0..8)
.into_iter()
.enumerate()
.filter_map(move |(biti, bit)| {
if (byte << bit) & 0x80 != 0 {
Some(bytei * 8 + biti)
} else {
None
}
})
})
.for_each(|index| canvas.set(index as u32 % (width), index as u32 / (width)));
println!("{}", canvas.frame());
}
#[cfg(not(feature = "drawille"))]
for (index, byte) in screen.iter().enumerate() {
if index % 8 == 0 {
print!("|");
if index % width as usize == 0 {
print!("{index:03x}|");
}
print!(
"{}",
format!("{byte:08b}").replace('0', " ").replace('1', "██")
format!("{byte:08b}").replace('0', " ").replace('1', "")
);
if index % 8 == 7 {
if index % width as usize == width as usize - 1 {
println!("|");
}
}
@ -339,7 +384,43 @@ impl Read<u16> for Bus {
fn read(&self, addr: impl Into<usize>) -> u16 {
let addr: usize = addr.into();
if let Some(bytes) = self.memory.get(addr..addr + 2) {
u16::from_be_bytes(bytes.try_into().expect("asked for 2 bytes, got != 2 bytes"))
u16::from_be_bytes(bytes.try_into().expect("Should get 2 bytes"))
} else {
0xc5c5
}
}
}
impl Read<u32> for Bus {
/// Read a u16 from address `addr`
fn read(&self, addr: impl Into<usize>) -> u32 {
let addr: usize = addr.into();
if let Some(bytes) = self.memory.get(addr..addr + 4) {
u32::from_be_bytes(bytes.try_into().expect("Should get 4 bytes"))
} else {
0xc5c5
}
}
}
impl Read<u64> for Bus {
/// Read a u16 from address `addr`
fn read(&self, addr: impl Into<usize>) -> u64 {
let addr: usize = addr.into();
if let Some(bytes) = self.memory.get(addr..addr + 8) {
u64::from_be_bytes(bytes.try_into().expect("Should get 8 bytes"))
} else {
0xc5c5
}
}
}
impl Read<u128> for Bus {
/// Read a u16 from address `addr`
fn read(&self, addr: impl Into<usize>) -> u128 {
let addr: usize = addr.into();
if let Some(bytes) = self.memory.get(addr..addr + 16) {
u128::from_be_bytes(bytes.try_into().expect("Should get 16 bytes"))
} else {
0xc5c5
}
@ -366,6 +447,36 @@ impl Write<u16> for Bus {
}
}
impl Write<u32> for Bus {
/// Write a u16 to address `addr`
fn write(&mut self, addr: impl Into<usize>, data: u32) {
let addr: usize = addr.into();
if let Some(slice) = self.get_mut(addr..addr + 4) {
data.to_be_bytes().as_mut().swap_with_slice(slice);
}
}
}
impl Write<u64> for Bus {
/// Write a u16 to address `addr`
fn write(&mut self, addr: impl Into<usize>, data: u64) {
let addr: usize = addr.into();
if let Some(slice) = self.get_mut(addr..addr + 8) {
data.to_be_bytes().as_mut().swap_with_slice(slice);
}
}
}
impl Write<u128> for Bus {
/// Write a u16 to address `addr`
fn write(&mut self, addr: impl Into<usize>, data: u128) {
let addr: usize = addr.into();
if let Some(slice) = self.get_mut(addr..addr + 16) {
data.to_be_bytes().as_mut().swap_with_slice(slice);
}
}
}
#[cfg(target_feature = "rhexdump")]
impl Display for Bus {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {

View File

@ -6,15 +6,18 @@
#[cfg(test)]
mod tests;
/// Disassembles Chip-8 instructions
pub trait Disassembler {
/// Disassemble a single instruction
fn once(&self, insn: u16) -> String;
}
pub mod disassembler;
pub mod flags;
pub mod instruction;
pub mod mode;
pub mod quirks;
use self::disassembler::{Dis, Insn};
use self::{
disassembler::{Dis, Disassembler, Insn},
flags::Flags,
mode::Mode,
quirks::Quirks,
};
use crate::{
bus::{Bus, Read, Region, Write},
error::{Error, Result},
@ -28,100 +31,6 @@ type Reg = usize;
type Adr = u16;
type Nib = u8;
/// Controls the authenticity behavior of the CPU on a granular level.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Quirks {
/// Binary ops in `8xy`(`1`, `2`, `3`) shouldn't set vF to 0
pub bin_ops: bool,
/// Shift ops in `8xy`(`6`, `E`) shouldn't source from vY instead of vX
pub shift: bool,
/// Draw operations shouldn't pause execution until the next timer tick
pub draw_wait: bool,
/// DMA instructions `Fx55`/`Fx65` shouldn't change I to I + x + 1
pub dma_inc: bool,
/// Indexed jump instructions should go to `adr` + v`a` where `a` is high nibble of `adr`.
pub stupid_jumps: bool,
}
impl From<bool> for Quirks {
fn from(value: bool) -> Self {
if value {
Quirks {
bin_ops: true,
shift: true,
draw_wait: true,
dma_inc: true,
stupid_jumps: false,
}
} else {
Quirks {
bin_ops: false,
shift: false,
draw_wait: false,
dma_inc: false,
stupid_jumps: false,
}
}
}
}
impl Default for Quirks {
fn default() -> Self {
Self::from(false)
}
}
/// Represents flags that aid in operation, but aren't inherent to the CPU
#[derive(Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct ControlFlags {
/// Set when debug (live disassembly) mode enabled
pub debug: bool,
/// Set when the emulator is paused by the user and should not update
pub pause: bool,
/// Set when the emulator is waiting for a keypress
pub keypause: bool,
/// Set when the emulator is waiting for a frame to be drawn
pub draw_wait: bool,
/// Set to the last key that's been *released* after a keypause
pub lastkey: Option<usize>,
/// Represents the set of emulator [Quirks] to enable
pub quirks: Quirks,
/// Represents the number of instructions to run per tick of the internal timer
pub monotonic: Option<usize>,
}
impl ControlFlags {
/// Toggles debug mode
///
/// # Examples
/// ```rust
/// # use chirp::*;
/// let mut cpu = CPU::default();
/// assert_eq!(true, cpu.flags.debug);
/// // Toggle debug mode
/// cpu.flags.debug();
/// assert_eq!(false, cpu.flags.debug);
/// ```
pub fn debug(&mut self) {
self.debug = !self.debug
}
/// Toggles pause
///
/// # Examples
/// ```rust
/// # use chirp::*;
/// let mut cpu = CPU::default();
/// assert_eq!(false, cpu.flags.pause);
/// // Pause the cpu
/// cpu.flags.pause();
/// assert_eq!(true, cpu.flags.pause);
/// ```
pub fn pause(&mut self) {
self.pause = !self.pause
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
struct Timers {
frame: Instant,
@ -142,8 +51,8 @@ impl Default for Timers {
#[derive(Clone, Debug, PartialEq)]
pub struct CPU {
/// Flags that control how the CPU behaves, but which aren't inherent to the
/// implementation. Includes [Quirks], target IPF, etc.
pub flags: ControlFlags,
/// chip-8. Includes [Quirks], target IPF, etc.
pub flags: Flags,
// memory map info
screen: Adr,
font: Adr,
@ -188,7 +97,7 @@ impl CPU {
sp: Adr,
disassembler: Dis,
breakpoints: Vec<Adr>,
flags: ControlFlags,
flags: Flags,
) -> Self {
CPU {
disassembler,
@ -563,7 +472,7 @@ impl CPU {
/// ```
pub fn tick(&mut self, bus: &mut Bus) -> Result<&mut Self> {
// Do nothing if paused
if self.flags.pause || self.flags.draw_wait || self.flags.keypause {
if self.flags.is_paused() {
// always tick in test mode
if self.flags.monotonic.is_some() {
self.cycle += 1;
@ -687,7 +596,7 @@ impl Default for CPU {
sound: 0.0,
cycle: 0,
keys: [false; 16],
flags: ControlFlags {
flags: Flags {
debug: true,
..Default::default()
},
@ -697,471 +606,3 @@ impl Default for CPU {
}
}
}
impl CPU {
/// Executes a single [Insn]
#[inline(always)]
#[rustfmt::skip]
fn execute(&mut self, bus: &mut Bus, instruction: Insn) {
match instruction {
Insn::cls => self.clear_screen(bus),
Insn::ret => self.ret(bus),
Insn::jmp { A } => self.jump(A),
Insn::call { A } => self.call(A, bus),
Insn::seb { B, x } => self.skip_equals_immediate(x, B),
Insn::sneb { B, x } => self.skip_not_equals_immediate(x, B),
Insn::se { y, x } => self.skip_equals(x, y),
Insn::movb { B, x } => self.load_immediate(x, B),
Insn::addb { B, x } => self.add_immediate(x, B),
Insn::mov { x, y } => self.load(x, y),
Insn::or { y, x } => self.or(x, y),
Insn::and { y, x } => self.and(x, y),
Insn::xor { y, x } => self.xor(x, y),
Insn::add { y, x } => self.add(x, y),
Insn::sub { y, x } => self.sub(x, y),
Insn::shr { y, x } => self.shift_right(x, y),
Insn::bsub { y, x } => self.backwards_sub(x, y),
Insn::shl { y, x } => self.shift_left(x, y),
Insn::sne { y, x } => self.skip_not_equals(x, y),
Insn::movI { A } => self.load_i_immediate(A),
Insn::jmpr { A } => self.jump_indexed(A),
Insn::rand { B, x } => self.rand(x, B),
Insn::draw { x, y, n } => self.draw(x, y, n, bus),
Insn::sek { x } => self.skip_key_equals(x),
Insn::snek { x } => self.skip_key_not_equals(x),
Insn::getdt { x } => self.load_delay_timer(x),
Insn::waitk { x } => self.wait_for_key(x),
Insn::setdt { x } => self.store_delay_timer(x),
Insn::movst { x } => self.store_sound_timer(x),
Insn::addI { x } => self.add_i(x),
Insn::font { x } => self.load_sprite(x),
Insn::bcd { x } => self.bcd_convert(x, bus),
Insn::dmao { x } => self.store_dma(x, bus),
Insn::dmai { x } => self.load_dma(x, bus),
}
}
}
// Below this point, comments may be duplicated per impl' block,
// since some opcodes handle multiple instructions.
// |`0aaa`| Issues a "System call" (ML routine)
//
// |opcode| effect |
// |------|------------------------------------|
// |`00e0`| Clear screen memory to all 0 |
// |`00ee`| Return from subroutine |
impl CPU {
/// |`00e0`| Clears the screen memory to 0
#[inline(always)]
fn clear_screen(&mut self, bus: &mut Bus) {
if let Some(screen) = bus.get_region_mut(Region::Screen) {
screen.fill(0);
}
}
/// |`00ee`| Returns from subroutine
#[inline(always)]
fn ret(&mut self, bus: &impl Read<u16>) {
self.sp = self.sp.wrapping_add(2);
self.pc = bus.read(self.sp);
}
}
// |`1aaa`| Sets pc to an absolute address
impl CPU {
/// |`1aaa`| Sets the program counter to an absolute address
#[inline(always)]
fn jump(&mut self, a: Adr) {
// jump to self == halt
if a.wrapping_add(2) == self.pc {
self.flags.pause = true;
}
self.pc = a;
}
}
// |`2aaa`| Pushes pc onto the stack, then jumps to a
impl CPU {
/// |`2aaa`| Pushes pc onto the stack, then jumps to a
#[inline(always)]
fn call(&mut self, a: Adr, bus: &mut impl Write<u16>) {
bus.write(self.sp, self.pc);
self.sp = self.sp.wrapping_sub(2);
self.pc = a;
}
}
// |`3xbb`| Skips next instruction if register X == b
impl CPU {
/// |`3xbb`| Skips the next instruction if register X == b
#[inline(always)]
fn skip_equals_immediate(&mut self, x: Reg, b: u8) {
if self.v[x] == b {
self.pc = self.pc.wrapping_add(2);
}
}
}
// |`4xbb`| Skips next instruction if register X != b
impl CPU {
/// |`4xbb`| Skips the next instruction if register X != b
#[inline(always)]
fn skip_not_equals_immediate(&mut self, x: Reg, b: u8) {
if self.v[x] != b {
self.pc = self.pc.wrapping_add(2);
}
}
}
// |`5xyn`| Performs a register-register comparison
//
// |opcode| effect |
// |------|------------------------------------|
// |`5XY0`| Skip next instruction if vX == vY |
impl CPU {
/// |`5xy0`| Skips the next instruction if register X != register Y
#[inline(always)]
fn skip_equals(&mut self, x: Reg, y: Reg) {
if self.v[x] == self.v[y] {
self.pc = self.pc.wrapping_add(2);
}
}
}
// |`6xbb`| Loads immediate byte b into register vX
impl CPU {
/// |`6xbb`| Loads immediate byte b into register vX
#[inline(always)]
fn load_immediate(&mut self, x: Reg, b: u8) {
self.v[x] = b;
}
}
// |`7xbb`| Adds immediate byte b to register vX
impl CPU {
/// |`7xbb`| Adds immediate byte b to register vX
#[inline(always)]
fn add_immediate(&mut self, x: Reg, b: u8) {
self.v[x] = self.v[x].wrapping_add(b);
}
}
// |`8xyn`| Performs ALU operation
//
// |opcode| effect |
// |------|------------------------------------|
// |`8xy0`| Y = X |
// |`8xy1`| X = X | Y |
// |`8xy2`| X = X & Y |
// |`8xy3`| X = X ^ Y |
// |`8xy4`| X = X + Y; Set vF=carry |
// |`8xy5`| X = X - Y; Set vF=carry |
// |`8xy6`| X = X >> 1 |
// |`8xy7`| X = Y - X; Set vF=carry |
// |`8xyE`| X = X << 1 |
impl CPU {
/// |`8xy0`| Loads the value of y into x
#[inline(always)]
fn load(&mut self, x: Reg, y: Reg) {
self.v[x] = self.v[y];
}
/// |`8xy1`| Performs bitwise or of vX and vY, and stores the result in vX
///
/// # Quirk
/// The original chip-8 interpreter will clobber vF for any 8-series instruction
#[inline(always)]
fn or(&mut self, x: Reg, y: Reg) {
self.v[x] |= self.v[y];
if !self.flags.quirks.bin_ops {
self.v[0xf] = 0;
}
}
/// |`8xy2`| Performs bitwise and of vX and vY, and stores the result in vX
///
/// # Quirk
/// The original chip-8 interpreter will clobber vF for any 8-series instruction
#[inline(always)]
fn and(&mut self, x: Reg, y: Reg) {
self.v[x] &= self.v[y];
if !self.flags.quirks.bin_ops {
self.v[0xf] = 0;
}
}
/// |`8xy3`| Performs bitwise xor of vX and vY, and stores the result in vX
///
/// # Quirk
/// The original chip-8 interpreter will clobber vF for any 8-series instruction
#[inline(always)]
fn xor(&mut self, x: Reg, y: Reg) {
self.v[x] ^= self.v[y];
if !self.flags.quirks.bin_ops {
self.v[0xf] = 0;
}
}
/// |`8xy4`| Performs addition of vX and vY, and stores the result in vX
#[inline(always)]
fn add(&mut self, x: Reg, y: Reg) {
let carry;
(self.v[x], carry) = self.v[x].overflowing_add(self.v[y]);
self.v[0xf] = carry.into();
}
/// |`8xy5`| Performs subtraction of vX and vY, and stores the result in vX
#[inline(always)]
fn sub(&mut self, x: Reg, y: Reg) {
let carry;
(self.v[x], carry) = self.v[x].overflowing_sub(self.v[y]);
self.v[0xf] = (!carry).into();
}
/// |`8xy6`| Performs bitwise right shift of vX
///
/// # Quirk
/// On the original chip-8 interpreter, this shifts vY and stores the result in vX
#[inline(always)]
fn shift_right(&mut self, x: Reg, y: Reg) {
let src: Reg = if self.flags.quirks.shift { x } else { y };
let shift_out = self.v[src] & 1;
self.v[x] = self.v[src] >> 1;
self.v[0xf] = shift_out;
}
/// |`8xy7`| Performs subtraction of vY and vX, and stores the result in vX
#[inline(always)]
fn backwards_sub(&mut self, x: Reg, y: Reg) {
let carry;
(self.v[x], carry) = self.v[y].overflowing_sub(self.v[x]);
self.v[0xf] = (!carry).into();
}
/// 8X_E: Performs bitwise left shift of vX
///
/// # Quirk
/// On the original chip-8 interpreter, this would perform the operation on vY
/// and store the result in vX. This behavior was left out, for now.
#[inline(always)]
fn shift_left(&mut self, x: Reg, y: Reg) {
let src: Reg = if self.flags.quirks.shift { x } else { y };
let shift_out: u8 = self.v[src] >> 7;
self.v[x] = self.v[src] << 1;
self.v[0xf] = shift_out;
}
}
// |`9xyn`| Performs a register-register comparison
//
// |opcode| effect |
// |------|------------------------------------|
// |`9XY0`| Skip next instruction if vX != vY |
impl CPU {
/// |`9xy0`| Skip next instruction if X != y
#[inline(always)]
fn skip_not_equals(&mut self, x: Reg, y: Reg) {
if self.v[x] != self.v[y] {
self.pc = self.pc.wrapping_add(2);
}
}
}
// |`Aaaa`| Load address #a into register I
impl CPU {
/// |`Aadr`| Load address #adr into register I
#[inline(always)]
fn load_i_immediate(&mut self, a: Adr) {
self.i = a;
}
}
// |`Baaa`| Jump to &adr + v0
impl CPU {
/// |`Badr`| Jump to &adr + v0
///
/// Quirk:
/// On the Super-Chip, this does stupid shit
#[inline(always)]
fn jump_indexed(&mut self, a: Adr) {
let reg = if self.flags.quirks.stupid_jumps {
a as usize >> 8
} else {
0
};
self.pc = a.wrapping_add(self.v[reg] as Adr);
}
}
// |`Cxbb`| Stores a random number & the provided byte into vX
impl CPU {
/// |`Cxbb`| Stores a random number & the provided byte into vX
#[inline(always)]
fn rand(&mut self, x: Reg, b: u8) {
self.v[x] = random::<u8>() & b;
}
}
// |`Dxyn`| Draws n-byte sprite to the screen at coordinates (vX, vY)
impl CPU {
/// |`Dxyn`| Draws n-byte sprite to the screen at coordinates (vX, vY)
///
/// # Quirk
/// On the original chip-8 interpreter, this will wait for a VBI
#[inline(always)]
fn draw(&mut self, x: Reg, y: Reg, n: Nib, bus: &mut Bus) {
let (x, y) = (self.v[x] as u16 % 64, self.v[y] as u16 % 32);
if !self.flags.quirks.draw_wait {
self.flags.draw_wait = true;
}
self.v[0xf] = 0;
for byte in 0..n as u16 {
if y + byte > 32 {
return;
}
// Calculate the lower bound address based on the X,Y position on the screen
let addr = (y + byte) * 8 + (x & 0x3f) / 8 + self.screen;
// Read a byte of sprite data into a u16, and shift it x % 8 bits
let sprite: u8 = bus.read(self.i + byte);
let sprite =
(sprite as u16) << (8 - (x & 7)) & if x % 64 > 56 { 0xff00 } else { 0xffff };
// Read a u16 from the bus containing the two bytes which might need to be updated
let mut screen: u16 = bus.read(addr);
// Save the bits-toggled-off flag if necessary
if screen & sprite != 0 {
self.v[0xF] = 1
}
// Update the screen word by XORing the sprite byte
screen ^= sprite;
// Save the result to the screen
bus.write(addr, screen);
}
}
}
// |`Exbb`| Skips instruction on value of keypress
//
// |opcode| effect |
// |------|------------------------------------|
// |`eX9e`| Skip next instruction if key == vX |
// |`eXa1`| Skip next instruction if key != vX |
impl CPU {
/// |`Ex9E`| Skip next instruction if key == vX
#[inline(always)]
fn skip_key_equals(&mut self, x: Reg) {
let x = self.v[x] as usize;
if self.keys[x] {
self.pc += 2;
}
}
/// |`ExaE`| Skip next instruction if key != vX
#[inline(always)]
fn skip_key_not_equals(&mut self, x: Reg) {
let x = self.v[x] as usize;
if !self.keys[x] {
self.pc += 2;
}
}
}
// |`Fxbb`| Performs IO
//
// |opcode| effect |
// |------|------------------------------------|
// |`fX07`| Set vX to value in delay timer |
// |`fX0a`| Wait for input, store key in vX |
// |`fX15`| Set sound timer to the value in vX |
// |`fX18`| set delay timer to the value in vX |
// |`fX1e`| Add vX to I |
// |`fX29`| Load sprite for character x into I |
// |`fX33`| BCD convert X into I[0..3] |
// |`fX55`| DMA Stor from I to registers 0..=X |
// |`fX65`| DMA Load from I to registers 0..=X |
impl CPU {
/// |`Fx07`| Get the current DT, and put it in vX
/// ```py
/// vX = DT
/// ```
#[inline(always)]
fn load_delay_timer(&mut self, x: Reg) {
self.v[x] = self.delay as u8;
}
/// |`Fx0A`| Wait for key, then vX = K
#[inline(always)]
fn wait_for_key(&mut self, x: Reg) {
if let Some(key) = self.flags.lastkey {
self.v[x] = key as u8;
self.flags.lastkey = None;
} else {
self.pc = self.pc.wrapping_sub(2);
self.flags.keypause = true;
}
}
/// |`Fx15`| Load vX into DT
/// ```py
/// DT = vX
/// ```
#[inline(always)]
fn store_delay_timer(&mut self, x: Reg) {
self.delay = self.v[x] as f64;
}
/// |`Fx18`| Load vX into ST
/// ```py
/// ST = vX;
/// ```
#[inline(always)]
fn store_sound_timer(&mut self, x: Reg) {
self.sound = self.v[x] as f64;
}
/// |`Fx1e`| Add vX to I,
/// ```py
/// I += vX;
/// ```
#[inline(always)]
fn add_i(&mut self, x: Reg) {
self.i += self.v[x] as u16;
}
/// |`Fx29`| Load sprite for character x into I
/// ```py
/// I = sprite(X);
/// ```
#[inline(always)]
fn load_sprite(&mut self, x: Reg) {
self.i = self.font + (5 * (self.v[x] as Adr % 0x10));
}
/// |`Fx33`| BCD convert X into I`[0..3]`
#[inline(always)]
fn bcd_convert(&mut self, x: Reg, bus: &mut Bus) {
let x = self.v[x];
bus.write(self.i.wrapping_add(2), x % 10);
bus.write(self.i.wrapping_add(1), x / 10 % 10);
bus.write(self.i, x / 100 % 10);
}
/// |`Fx55`| DMA Stor from I to registers 0..=X
///
/// # Quirk
/// The original chip-8 interpreter uses I to directly index memory,
/// with the side effect of leaving I as I+X+1 after the transfer is done.
#[inline(always)]
fn store_dma(&mut self, x: Reg, bus: &mut Bus) {
let i = self.i as usize;
for (reg, value) in bus
.get_mut(i..=i + x)
.unwrap_or_default()
.iter_mut()
.enumerate()
{
*value = self.v[reg]
}
if !self.flags.quirks.dma_inc {
self.i += x as Adr + 1;
}
}
/// |`Fx65`| DMA Load from I to registers 0..=X
///
/// # Quirk
/// The original chip-8 interpreter uses I to directly index memory,
/// with the side effect of leaving I as I+X+1 after the transfer is done.
#[inline(always)]
fn load_dma(&mut self, x: Reg, bus: &mut Bus) {
let i = self.i as usize;
for (reg, value) in bus.get(i..=i + x).unwrap_or_default().iter().enumerate() {
self.v[reg] = *value;
}
if !self.flags.quirks.dma_inc {
self.i += x as Adr + 1;
}
}
}

View File

@ -1,14 +1,20 @@
//! A disassembler for Chip-8 opcodes
#![allow(clippy::bad_bit_mask)]
use super::Disassembler;
use imperative_rs::InstructionSet;
use owo_colors::{OwoColorize, Style};
use std::fmt::Display;
/// Disassembles Chip-8 instructions
pub trait Disassembler {
/// Disassemble a single instruction
fn once(&self, insn: u16) -> String;
}
#[allow(non_camel_case_types, non_snake_case, missing_docs)]
#[derive(Clone, Copy, Debug, InstructionSet, PartialEq, Eq)]
/// Implements a Disassembler using imperative_rs
pub enum Insn {
// Base instruction set
/// | 00e0 | Clear screen memory to 0s
#[opcode = "0x00e0"]
cls,
@ -77,7 +83,7 @@ pub enum Insn {
rand { B: u8, x: usize },
/// | Dxyn | Draws n-byte sprite to the screen at coordinates (vX, vY)
#[opcode = "0xdxyn"]
draw { x: usize, y: usize, n: u8 },
draw { y: usize, x: usize, n: u8 },
/// | eX9e | Skip next instruction if key == vX
#[opcode = "0xex9e"]
sek { x: usize },
@ -111,19 +117,49 @@ pub enum Insn {
// | fX65 | DMA Load from I to registers 0..X
#[opcode = "0xfx65"]
dmai { x: usize },
// Super Chip extensions
/// | 00cN | Scroll the screen down
#[opcode = "0x00cn"]
scd { n: u8 },
/// | 00fb | Scroll the screen right
#[opcode = "0x00fb"]
scr,
/// | 00fc | Scroll the screen left
#[opcode = "0x00fc"]
scl,
/// | 00fd | Exit (halt and catch fire)
#[opcode = "0x00fd"]
halt,
/// | 00fe | Return to low-resolution mode
#[opcode = "0x00fe"]
lores,
/// | 00ff | Enter high-resolution mode
#[opcode = "0x00ff"]
hires,
/// | fx30 | Enter high-resolution mode
#[opcode = "0xfx30"]
hfont { x: usize },
/// | fx75 | Save to "flag registers"
#[opcode = "0xfx75"]
flgo { x: usize },
/// | fx85 | Load from "flag registers"
#[opcode = "0xfx85"]
flgi { x: usize },
}
impl Display for Insn {
#[rustfmt::skip]
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
// Base instruction set
Insn::cls => write!(f, "cls "),
Insn::ret => write!(f, "ret "),
Insn::jmp { A } => write!(f, "jmp {A:03x}"),
Insn::call { A } => write!(f, "call {A:03x}"),
Insn::seb { B, x } => write!(f, "se #{B:02x}, v{x:X}"),
Insn::sneb { B, x } => write!(f, "sne #{B:02x}, v{x:X}"),
Insn::se { y, x } => write!(f, "se v{x:X}, v{y:X}"),
Insn::se { y, x } => write!(f, "se v{y:X}, v{x:X}"),
Insn::movb { B, x } => write!(f, "mov #{B:02x}, v{x:X}"),
Insn::addb { B, x } => write!(f, "add #{B:02x}, v{x:X}"),
Insn::mov { x, y } => write!(f, "mov v{y:X}, v{x:X}"),
@ -135,11 +171,11 @@ impl Display for Insn {
Insn::shr { y, x } => write!(f, "shr v{y:X}, v{x:X}"),
Insn::bsub { y, x } => write!(f, "bsub v{y:X}, v{x:X}"),
Insn::shl { y, x } => write!(f, "shl v{y:X}, v{x:X}"),
Insn::sne { y, x } => write!(f, "sne v{x:X}, v{y:X}"),
Insn::sne { y, x } => write!(f, "sne v{y:X}, v{x:X}"),
Insn::movI { A } => write!(f, "mov ${A:03x}, I"),
Insn::jmpr { A } => write!(f, "jmp ${A:03x}+v0"),
Insn::rand { B, x } => write!(f, "rand #{B:02x}, v{x:X}"),
Insn::draw { x, y, n } => write!(f, "draw #{n:x}, v{x:X}, v{y:X}"),
Insn::draw { y, x, n } => write!(f, "draw #{n:x}, v{x:X}, v{y:X}"),
Insn::sek { x } => write!(f, "sek v{x:X}"),
Insn::snek { x } => write!(f, "snek v{x:X}"),
Insn::getdt { x } => write!(f, "mov DT, v{x:X}"),
@ -151,6 +187,16 @@ impl Display for Insn {
Insn::bcd { x } => write!(f, "bcd v{x:X}, &I"),
Insn::dmao { x } => write!(f, "dmao v{x:X}"),
Insn::dmai { x } => write!(f, "dmai v{x:X}"),
// Super Chip extensions
Insn::scd { n } => write!(f, "scd #{n:x}"),
Insn::scr => write!(f, "scr "),
Insn::scl => write!(f, "scl "),
Insn::halt => write!(f, "halt "),
Insn::lores => write!(f, "lores "),
Insn::hires => write!(f, "hires "),
Insn::hfont { x } => write!(f, "hfont v{x:X}"),
Insn::flgo { x } => write!(f, "flgo v{x:X}"),
Insn::flgi { x } => write!(f, "flgi v{x:X}"),
}
}
}

63
src/cpu/flags.rs Normal file
View File

@ -0,0 +1,63 @@
//! Represents [Flags] that aid in implementation but aren't a part of the Chip-8 spec
use super::{Mode, Quirks};
/// Represents flags that aid in implementation but aren't a part of the Chip-8 spec
#[derive(Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Flags {
/// Set when debug (live disassembly) mode enabled
pub debug: bool,
/// Set when the emulator is paused by the user and should not update
pub pause: bool,
/// Set when the emulator is waiting for a keypress
pub keypause: bool,
/// Set when the emulator is waiting for a frame to be drawn
pub draw_wait: bool,
/// Set when the emulator is in high-res mode
pub draw_mode: bool,
/// Set to the last key that's been *released* after a keypause
pub lastkey: Option<usize>,
/// Represents the current emulator [Mode]
pub mode: Mode,
/// Represents the set of emulator [Quirks] to enable, independent of the [Mode]
pub quirks: Quirks,
/// Represents the number of instructions to run per tick of the internal timer
pub monotonic: Option<usize>,
}
impl Flags {
/// Toggles debug mode
///
/// # Examples
/// ```rust
/// # use chirp::*;
/// let mut cpu = CPU::default();
/// assert_eq!(true, cpu.flags.debug);
/// // Toggle debug mode
/// cpu.flags.debug();
/// assert_eq!(false, cpu.flags.debug);
/// ```
pub fn debug(&mut self) {
self.debug = !self.debug
}
/// Toggles pause
///
/// # Examples
/// ```rust
/// # use chirp::*;
/// let mut cpu = CPU::default();
/// assert_eq!(false, cpu.flags.pause);
/// // Pause the cpu
/// cpu.flags.pause();
/// assert_eq!(true, cpu.flags.pause);
/// ```
pub fn pause(&mut self) {
self.pause = !self.pause
}
/// Gets whether the CPU is paused for any reason
pub fn is_paused(&self) -> bool {
self.pause || self.draw_wait || self.keypause
}
}

View File

@ -1,235 +1,625 @@
// (c) 2023 John A. Breaux
// This code is licensed under MIT license (see LICENSE.txt for details)
//! Represents a chip-8 instruction as a Rust enum
//! Contains implementations for each [Insn] as private member functions of [CPU]
use super::{Adr, Nib, Reg};
type Word = Adr;
type Byte = u8;
type Ins = Nib;
use super::*;
/// Extract the instruction nibble from a word
#[inline]
pub fn i(ins: Word) -> Ins {
(ins >> 12) as Ins & 0xf
}
/// Extracts the X-register nibble from a word
#[inline]
pub fn x(ins: Word) -> Reg {
ins as Reg >> 8 & 0xf
}
/// Extracts the Y-register nibble from a word
#[inline]
pub fn y(ins: u16) -> Reg {
ins as Reg >> 4 & 0xf
}
/// Extracts the nibble-sized immediate from a word
#[inline]
pub fn n(ins: Word) -> Nib {
ins as Nib & 0xf
}
/// Extracts the byte-sized immediate from a word
#[inline]
pub fn b(ins: Word) -> Byte {
ins as Byte
}
/// Extracts the address-sized immediate from a word
#[inline]
pub fn a(ins: Word) -> Adr {
ins & 0x0fff
}
/// Restores the instruction nibble into a word
#[inline]
pub fn ii(i: Ins) -> u16 {
(i as Word & 0xf) << 12
}
/// Restores the X-register nibble into a word
#[inline]
pub fn xi(x: Reg) -> Word {
(x as Word & 0xf) << 8
}
/// Restores the Y-register nibble into a word
#[inline]
pub fn yi(y: Reg) -> Word {
(y as Word & 0xf) << 4
}
/// Restores the nibble-sized immediate into a word
#[inline]
pub fn ni(n: Nib) -> Word {
n as Word & 0xf
}
/// Restores the byte-sized immediate into a word
#[inline]
pub fn bi(b: Byte) -> Word {
b as Word
}
/// Captures the operand and type of a Chip-8 instruction
pub enum Chip8Instruction {
Unimplemented(Word),
Clear,
Return,
Sys(Adr),
Jump(Adr),
Call(Adr),
SkipEqualsByte(Reg, Byte),
SkipNotEqualsByte(Reg, Byte),
SkipEquals(Reg, Reg),
LoadImmediate(Reg, Byte),
AddImmediate(Reg, Byte),
Copy(Reg, Reg),
Or(Reg, Reg),
And(Reg, Reg),
Xor(Reg, Reg),
Add(Reg, Reg),
Sub(Reg, Reg),
ShiftRight(Reg, Reg),
BackwardsSub(Reg, Reg),
ShiftLeft(Reg, Reg),
SkipNotEquals(Reg, Reg),
LoadIndirect(Adr),
JumpIndexed(Adr),
Rand(Reg, Byte),
Draw(Reg, Reg, Nib),
SkipEqualsKey(Reg),
SkipNotEqualsKey(Reg),
StoreDelay(Reg),
WaitForKey(Reg),
LoadDelay(Reg),
LoadSound(Reg),
AddIndirect(Reg),
LoadSprite(Reg),
BcdConvert(Reg),
DmaStore(Reg),
DmaLoad(Reg),
}
impl TryFrom<Word> for Chip8Instruction {
type Error = crate::error::Error;
/// Converts a 16-bit word into a Chip8Instruction, when possible.
fn try_from(opcode: Word) -> Result<Self, Self::Error> {
use crate::error::Error::*;
let (i, x, y, n, b, a) = (
i(opcode),
x(opcode),
y(opcode),
n(opcode),
b(opcode),
a(opcode),
);
if i > 0xf {
return Err(FunkyMath {
word: opcode,
explanation: "Instruction nibble greater than 0xf".into(),
});
impl CPU {
/// Executes a single [Insn]
#[inline(always)]
#[rustfmt::skip]
pub(super) fn execute(&mut self, bus: &mut Bus, instruction: Insn) {
match instruction {
// Core Chip-8 instructions
Insn::cls => self.clear_screen(bus),
Insn::ret => self.ret(bus),
Insn::jmp { A } => self.jump(A),
Insn::call { A } => self.call(A, bus),
Insn::seb { x, B } => self.skip_equals_immediate(x, B),
Insn::sneb { x, B } => self.skip_not_equals_immediate(x, B),
Insn::se { y, x } => self.skip_equals(x, y),
Insn::movb { x, B } => self.load_immediate(x, B),
Insn::addb { x, B } => self.add_immediate(x, B),
Insn::mov { y, x } => self.load(x, y),
Insn::or { y, x } => self.or(x, y),
Insn::and { y, x } => self.and(x, y),
Insn::xor { y, x } => self.xor(x, y),
Insn::add { y, x } => self.add(x, y),
Insn::sub { y, x } => self.sub(x, y),
Insn::shr { y, x } => self.shift_right(x, y),
Insn::bsub { y, x } => self.backwards_sub(x, y),
Insn::shl { y, x } => self.shift_left(x, y),
Insn::sne { y, x } => self.skip_not_equals(x, y),
Insn::movI { A } => self.load_i_immediate(A),
Insn::jmpr { A } => self.jump_indexed(A),
Insn::rand { x, B } => self.rand(x, B),
Insn::draw { y, x, n } => self.draw(x, y, n, bus),
Insn::sek { x } => self.skip_key_equals(x),
Insn::snek { x } => self.skip_key_not_equals(x),
Insn::getdt { x } => self.load_delay_timer(x),
Insn::waitk { x } => self.wait_for_key(x),
Insn::setdt { x } => self.store_delay_timer(x),
Insn::movst { x } => self.store_sound_timer(x),
Insn::addI { x } => self.add_i(x),
Insn::font { x } => self.load_sprite(x),
Insn::bcd { x } => self.bcd_convert(x, bus),
Insn::dmao { x } => self.store_dma(x, bus),
Insn::dmai { x } => self.load_dma(x, bus),
// Super-Chip extensions
Insn::scd { n } => self.scroll_down(n, bus),
Insn::scr => self.scroll_right(bus),
Insn::scl => self.scroll_left(bus),
Insn::halt => self.flags.pause(),
Insn::lores => self.init_lores(bus),
Insn::hires => self.init_hires(bus),
Insn::hfont { x } => self.load_big_sprite(x),
Insn::flgo { x } => self.store_flags(x, bus),
Insn::flgi { x } => self.load_flags(x, bus),
}
Ok(match i {
// # Issue a system call
// |opcode| effect |
// |------|------------------------------------|
// | 00e0 | Clear screen memory to all 0 |
// | 00ee | Return from subroutine |
0x0 => match a {
0xe0 => Self::Clear,
0xee => Self::Return,
_ => Self::Sys(a),
},
// | 1aaa | Sets pc to an absolute address
0x1 => Self::Jump(a),
// | 2aaa | Pushes pc onto the stack, then jumps to a
0x2 => Self::Call(a),
// | 3xbb | Skips next instruction if register X == b
0x3 => Self::SkipEqualsByte(x, b),
// | 4xbb | Skips next instruction if register X != b
0x4 => Self::SkipNotEqualsByte(x, b),
// # Performs a register-register comparison
// |opcode| effect |
// |------|------------------------------------|
// | 9XY0 | Skip next instruction if vX == vY |
0x5 => match n {
0x0 => Self::SkipEquals(x, y),
_ => Self::Unimplemented(opcode),
},
// 6xbb: Loads immediate byte b into register vX
0x6 => Self::LoadImmediate(x, b),
// 7xbb: Adds immediate byte b to register vX
0x7 => Self::AddImmediate(x, b),
// # Performs ALU operation
// |opcode| effect |
// |------|------------------------------------|
// | 8xy0 | X = Y |
// | 8xy1 | X = X | Y |
// | 8xy2 | X = X & Y |
// | 8xy3 | X = X ^ Y |
// | 8xy4 | X = X + Y; Set vF=carry |
// | 8xy5 | X = X - Y; Set vF=carry |
// | 8xy6 | X = X >> 1 |
// | 8xy7 | X = Y - X; Set vF=carry |
// | 8xyE | X = X << 1 |
0x8 => match n {
0x0 => Self::Copy(x, y),
0x1 => Self::Or(x, y),
0x2 => Self::And(x, y),
0x3 => Self::Xor(x, y),
0x4 => Self::Add(x, y),
0x5 => Self::Sub(x, y),
0x6 => Self::ShiftRight(x, y),
0x7 => Self::BackwardsSub(x, y),
0xE => Self::ShiftLeft(x, y),
_ => Self::Unimplemented(opcode),
},
// # Performs a register-register comparison
// |opcode| effect |
// |------|------------------------------------|
// | 9XY0 | Skip next instruction if vX != vY |
0x9 => match n {
0 => Self::SkipNotEquals(x, y),
_ => Self::Unimplemented(opcode),
},
// Aaaa: Load address #a into register I
0xa => Self::LoadIndirect(a),
// Baaa: Jump to &adr + v0
0xb => Self::JumpIndexed(a),
// Cxbb: Stores a random number & the provided byte into vX
0xc => Self::Rand(x, b),
// Dxyn: Draws n-byte sprite to the screen at coordinates (vX, vY)
0xd => Self::Draw(x, y, n),
// # Skips instruction on value of keypress
// |opcode| effect |
// |------|------------------------------------|
// | eX9e | Skip next instruction if key == #X |
// | eXa1 | Skip next instruction if key != #X |
0xe => match b {
0x9e => Self::SkipEqualsKey(x),
0xa1 => Self::SkipNotEqualsKey(x),
_ => Self::Unimplemented(opcode),
},
// # Performs IO
// |opcode| effect |
// |------|------------------------------------|
// | fX07 | Set vX to value in delay timer |
// | fX0a | Wait for input, store in vX m |
// | fX15 | Set sound timer to the value in vX |
// | fX18 | set delay timer to the value in vX |
// | fX1e | Add x to I |
// | fX29 | Load sprite for character x into I |
// | fX33 | BCD convert X into I[0..3] |
// | fX55 | DMA Stor from I to registers 0..X |
// | fX65 | DMA Load from I to registers 0..X |
0xf => match b {
0x07 => Self::StoreDelay(x),
0x0A => Self::WaitForKey(x),
0x15 => Self::LoadDelay(x),
0x18 => Self::LoadSound(x),
0x1E => Self::AddIndirect(x),
0x29 => Self::LoadSprite(x),
0x33 => Self::BcdConvert(x),
0x55 => Self::DmaStore(x),
0x65 => Self::DmaLoad(x),
_ => Self::Unimplemented(opcode),
},
_ => unreachable!("i somehow mutated from <= 0xf to > 0xf"),
})
}
}
// |`0aaa`| Issues a "System call" (ML routine)
//
// |opcode| effect |
// |------|------------------------------------|
// |`00e0`| Clear screen memory to all 0 |
// |`00ee`| Return from subroutine |
impl CPU {
/// |`00e0`| Clears the screen memory to 0
#[inline(always)]
pub(super) fn clear_screen(&mut self, bus: &mut Bus) {
bus.clear_region(Region::Screen);
}
/// |`00ee`| Returns from subroutine
#[inline(always)]
pub(super) fn ret(&mut self, bus: &impl Read<u16>) {
self.sp = self.sp.wrapping_add(2);
self.pc = bus.read(self.sp);
}
}
// |`1aaa`| Sets pc to an absolute address
impl CPU {
/// |`1aaa`| Sets the program counter to an absolute address
#[inline(always)]
pub(super) fn jump(&mut self, a: Adr) {
// jump to self == halt
if a.wrapping_add(2) == self.pc {
self.flags.pause = true;
}
self.pc = a;
}
}
// |`2aaa`| Pushes pc onto the stack, then jumps to a
impl CPU {
/// |`2aaa`| Pushes pc onto the stack, then jumps to a
#[inline(always)]
pub(super) fn call(&mut self, a: Adr, bus: &mut impl Write<u16>) {
bus.write(self.sp, self.pc);
self.sp = self.sp.wrapping_sub(2);
self.pc = a;
}
}
// |`3xbb`| Skips next instruction if register X == b
impl CPU {
/// |`3xbb`| Skips the next instruction if register X == b
#[inline(always)]
pub(super) fn skip_equals_immediate(&mut self, x: Reg, b: u8) {
if self.v[x] == b {
self.pc = self.pc.wrapping_add(2);
}
}
}
// |`4xbb`| Skips next instruction if register X != b
impl CPU {
/// |`4xbb`| Skips the next instruction if register X != b
#[inline(always)]
pub(super) fn skip_not_equals_immediate(&mut self, x: Reg, b: u8) {
if self.v[x] != b {
self.pc = self.pc.wrapping_add(2);
}
}
}
// |`5xyn`| Performs a register-register comparison
//
// |opcode| effect |
// |------|------------------------------------|
// |`5XY0`| Skip next instruction if vX == vY |
impl CPU {
/// |`5xy0`| Skips the next instruction if register X != register Y
#[inline(always)]
pub(super) fn skip_equals(&mut self, x: Reg, y: Reg) {
if self.v[x] == self.v[y] {
self.pc = self.pc.wrapping_add(2);
}
}
}
// |`6xbb`| Loads immediate byte b into register vX
impl CPU {
/// |`6xbb`| Loads immediate byte b into register vX
#[inline(always)]
pub(super) fn load_immediate(&mut self, x: Reg, b: u8) {
self.v[x] = b;
}
}
// |`7xbb`| Adds immediate byte b to register vX
impl CPU {
/// |`7xbb`| Adds immediate byte b to register vX
#[inline(always)]
pub(super) fn add_immediate(&mut self, x: Reg, b: u8) {
self.v[x] = self.v[x].wrapping_add(b);
}
}
// |`8xyn`| Performs ALU operation
//
// |opcode| effect |
// |------|------------------------------------|
// |`8xy0`| Y = X |
// |`8xy1`| X = X | Y |
// |`8xy2`| X = X & Y |
// |`8xy3`| X = X ^ Y |
// |`8xy4`| X = X + Y; Set vF=carry |
// |`8xy5`| X = X - Y; Set vF=carry |
// |`8xy6`| X = X >> 1 |
// |`8xy7`| X = Y - X; Set vF=carry |
// |`8xyE`| X = X << 1 |
impl CPU {
/// |`8xy0`| Loads the value of y into x
#[inline(always)]
pub(super) fn load(&mut self, x: Reg, y: Reg) {
self.v[x] = self.v[y];
}
/// |`8xy1`| Performs bitwise or of vX and vY, and stores the result in vX
///
/// # Quirk
/// The original chip-8 interpreter will clobber vF for any 8-series instruction
#[inline(always)]
pub(super) fn or(&mut self, x: Reg, y: Reg) {
self.v[x] |= self.v[y];
if !self.flags.quirks.bin_ops {
self.v[0xf] = 0;
}
}
/// |`8xy2`| Performs bitwise and of vX and vY, and stores the result in vX
///
/// # Quirk
/// The original chip-8 interpreter will clobber vF for any 8-series instruction
#[inline(always)]
pub(super) fn and(&mut self, x: Reg, y: Reg) {
self.v[x] &= self.v[y];
if !self.flags.quirks.bin_ops {
self.v[0xf] = 0;
}
}
/// |`8xy3`| Performs bitwise xor of vX and vY, and stores the result in vX
///
/// # Quirk
/// The original chip-8 interpreter will clobber vF for any 8-series instruction
#[inline(always)]
pub(super) fn xor(&mut self, x: Reg, y: Reg) {
self.v[x] ^= self.v[y];
if !self.flags.quirks.bin_ops {
self.v[0xf] = 0;
}
}
/// |`8xy4`| Performs addition of vX and vY, and stores the result in vX
#[inline(always)]
pub(super) fn add(&mut self, x: Reg, y: Reg) {
let carry;
(self.v[x], carry) = self.v[x].overflowing_add(self.v[y]);
self.v[0xf] = carry.into();
}
/// |`8xy5`| Performs subtraction of vX and vY, and stores the result in vX
#[inline(always)]
pub(super) fn sub(&mut self, x: Reg, y: Reg) {
let carry;
(self.v[x], carry) = self.v[x].overflowing_sub(self.v[y]);
self.v[0xf] = (!carry).into();
}
/// |`8xy6`| Performs bitwise right shift of vX
///
/// # Quirk
/// On the original chip-8 interpreter, this shifts vY and stores the result in vX
#[inline(always)]
pub(super) fn shift_right(&mut self, x: Reg, y: Reg) {
let src: Reg = if self.flags.quirks.shift { x } else { y };
let shift_out = self.v[src] & 1;
self.v[x] = self.v[src] >> 1;
self.v[0xf] = shift_out;
}
/// |`8xy7`| Performs subtraction of vY and vX, and stores the result in vX
#[inline(always)]
pub(super) fn backwards_sub(&mut self, x: Reg, y: Reg) {
let carry;
(self.v[x], carry) = self.v[y].overflowing_sub(self.v[x]);
self.v[0xf] = (!carry).into();
}
/// 8X_E: Performs bitwise left shift of vX
///
/// # Quirk
/// On the original chip-8 interpreter, this would perform the operation on vY
/// and store the result in vX. This behavior was left out, for now.
#[inline(always)]
pub(super) fn shift_left(&mut self, x: Reg, y: Reg) {
let src: Reg = if self.flags.quirks.shift { x } else { y };
let shift_out: u8 = self.v[src] >> 7;
self.v[x] = self.v[src] << 1;
self.v[0xf] = shift_out;
}
}
// |`9xyn`| Performs a register-register comparison
//
// |opcode| effect |
// |------|------------------------------------|
// |`9XY0`| Skip next instruction if vX != vY |
impl CPU {
/// |`9xy0`| Skip next instruction if X != y
#[inline(always)]
pub(super) fn skip_not_equals(&mut self, x: Reg, y: Reg) {
if self.v[x] != self.v[y] {
self.pc = self.pc.wrapping_add(2);
}
}
}
// |`Aaaa`| Load address #a into register I
impl CPU {
/// |`Aadr`| Load address #adr into register I
#[inline(always)]
pub(super) fn load_i_immediate(&mut self, a: Adr) {
self.i = a;
}
}
// |`Baaa`| Jump to &adr + v0
impl CPU {
/// |`Badr`| Jump to &adr + v0
///
/// Quirk:
/// On the Super-Chip, this does stupid shit
#[inline(always)]
pub(super) fn jump_indexed(&mut self, a: Adr) {
let reg = if self.flags.quirks.stupid_jumps {
a as usize >> 8
} else {
0
};
self.pc = a.wrapping_add(self.v[reg] as Adr);
}
}
// |`Cxbb`| Stores a random number & the provided byte into vX
impl CPU {
/// |`Cxbb`| Stores a random number & the provided byte into vX
#[inline(always)]
pub(super) fn rand(&mut self, x: Reg, b: u8) {
self.v[x] = random::<u8>() & b;
}
}
// |`Dxyn`| Draws n-byte sprite to the screen at coordinates (vX, vY)
impl CPU {
/// |`Dxyn`| Draws n-byte sprite to the screen at coordinates (vX, vY)
///
/// # Quirk
/// On the original chip-8 interpreter, this will wait for a VBI
#[inline(always)]
pub(super) fn draw(&mut self, x: Reg, y: Reg, n: Nib, bus: &mut Bus) {
if !self.flags.quirks.draw_wait {
self.flags.draw_wait = true;
}
// self.draw_hires handles both hi-res mode and drawing 16x16 sprites
if self.flags.draw_mode || n == 0 {
self.draw_hires(x, y, n, bus);
} else {
self.draw_lores(x, y, n, bus);
}
}
#[inline(always)]
pub(super) fn draw_lores(&mut self, x: Reg, y: Reg, n: Nib, bus: &mut Bus) {
self.draw_sprite(self.v[x] as u16 % 64, self.v[y] as u16 % 32, n, 64, 32, bus);
}
#[inline(always)]
pub(super) fn draw_sprite(&mut self, x: u16, y: u16, n: Nib, w: u16, h: u16, bus: &mut Bus) {
let w_bytes = w / 8;
self.v[0xf] = 0;
if let Some(sprite) = bus.get(self.i as usize..(self.i + n as u16) as usize) {
let sprite = sprite.to_vec();
for (line, &sprite) in sprite.iter().enumerate() {
let line = line as u16;
if y + line >= h {
break;
}
let sprite = (sprite as u16) << (8 - (x % 8))
& if (x % w) >= (w - 8) { 0xff00 } else { 0xffff };
let addr = |x, y| -> u16 { (y + line) * w_bytes + (x / 8) + self.screen };
let screen: u16 = bus.read(addr(x, y));
bus.write(addr(x, y), screen ^ sprite);
if screen & sprite != 0 {
self.v[0xf] = 1;
}
}
}
}
}
// |`Exbb`| Skips instruction on value of keypress
//
// |opcode| effect |
// |------|------------------------------------|
// |`eX9e`| Skip next instruction if key == vX |
// |`eXa1`| Skip next instruction if key != vX |
impl CPU {
/// |`Ex9E`| Skip next instruction if key == vX
#[inline(always)]
pub(super) fn skip_key_equals(&mut self, x: Reg) {
if self.keys[self.v[x] as usize & 0xf] {
self.pc += 2;
}
}
/// |`ExaE`| Skip next instruction if key != vX
#[inline(always)]
pub(super) fn skip_key_not_equals(&mut self, x: Reg) {
if !self.keys[self.v[x] as usize & 0xf] {
self.pc += 2;
}
}
}
// |`Fxbb`| Performs IO
//
// |opcode| effect |
// |------|------------------------------------|
// |`fX07`| Set vX to value in delay timer |
// |`fX0a`| Wait for input, store key in vX |
// |`fX15`| Set sound timer to the value in vX |
// |`fX18`| set delay timer to the value in vX |
// |`fX1e`| Add vX to I |
// |`fX29`| Load sprite for character x into I |
// |`fX33`| BCD convert X into I[0..3] |
// |`fX55`| DMA Stor from I to registers 0..=X |
// |`fX65`| DMA Load from I to registers 0..=X |
impl CPU {
/// |`Fx07`| Get the current DT, and put it in vX
/// ```py
/// vX = DT
/// ```
#[inline(always)]
pub(super) fn load_delay_timer(&mut self, x: Reg) {
self.v[x] = self.delay as u8;
}
/// |`Fx0A`| Wait for key, then vX = K
#[inline(always)]
pub(super) fn wait_for_key(&mut self, x: Reg) {
if let Some(key) = self.flags.lastkey {
self.v[x] = key as u8;
self.flags.lastkey = None;
} else {
self.pc = self.pc.wrapping_sub(2);
self.flags.keypause = true;
}
}
/// |`Fx15`| Load vX into DT
/// ```py
/// DT = vX
/// ```
#[inline(always)]
pub(super) fn store_delay_timer(&mut self, x: Reg) {
self.delay = self.v[x] as f64;
}
/// |`Fx18`| Load vX into ST
/// ```py
/// ST = vX;
/// ```
#[inline(always)]
pub(super) fn store_sound_timer(&mut self, x: Reg) {
self.sound = self.v[x] as f64;
}
/// |`Fx1e`| Add vX to I,
/// ```py
/// I += vX;
/// ```
#[inline(always)]
pub(super) fn add_i(&mut self, x: Reg) {
self.i += self.v[x] as u16;
}
/// |`Fx29`| Load sprite for character x into I
/// ```py
/// I = sprite(X);
/// ```
#[inline(always)]
pub(super) fn load_sprite(&mut self, x: Reg) {
self.i = self.font + (5 * (self.v[x] as Adr % 0x10));
}
/// |`Fx33`| BCD convert X into I`[0..3]`
#[inline(always)]
pub(super) fn bcd_convert(&mut self, x: Reg, bus: &mut Bus) {
let x = self.v[x];
bus.write(self.i.wrapping_add(2), x % 10);
bus.write(self.i.wrapping_add(1), x / 10 % 10);
bus.write(self.i, x / 100 % 10);
}
/// |`Fx55`| DMA Stor from I to registers 0..=X
///
/// # Quirk
/// The original chip-8 interpreter uses I to directly index memory,
/// with the side effect of leaving I as I+X+1 after the transfer is done.
#[inline(always)]
pub(super) fn store_dma(&mut self, x: Reg, bus: &mut Bus) {
let i = self.i as usize;
for (reg, value) in bus
.get_mut(i..=i + x)
.unwrap_or_default()
.iter_mut()
.enumerate()
{
*value = self.v[reg]
}
if !self.flags.quirks.dma_inc {
self.i += x as Adr + 1;
}
}
/// |`Fx65`| DMA Load from I to registers 0..=X
///
/// # Quirk
/// The original chip-8 interpreter uses I to directly index memory,
/// with the side effect of leaving I as I+X+1 after the transfer is done.
#[inline(always)]
pub(super) fn load_dma(&mut self, x: Reg, bus: &mut Bus) {
let i = self.i as usize;
for (reg, value) in bus.get(i..=i + x).unwrap_or_default().iter().enumerate() {
self.v[reg] = *value;
}
if !self.flags.quirks.dma_inc {
self.i += x as Adr + 1;
}
}
}
//////////////// SUPER CHIP ////////////////
impl CPU {
/// |`00cN`| Scroll the screen down N lines
#[inline(always)]
pub(super) fn scroll_down(&mut self, n: Nib, bus: &mut Bus) {
match self.flags.draw_mode {
true => {
// Get a line from the bus
for i in (0..16 * (64 - n as usize)).step_by(16).rev() {
let i = i + self.screen as usize;
let line: u128 = bus.read(i);
bus.write(i - (n as usize * 16), 0u128);
bus.write(i, line);
}
}
false => {
// Get a line from the bus
for i in (0..8 * (32 - n as usize)).step_by(8).rev() {
let i = i + self.screen as usize;
let line: u64 = bus.read(i);
bus.write(i, 0u64);
bus.write(i + (n as usize * 8), line);
}
}
}
}
/// |`00fb`| Scroll the screen right
#[inline(always)]
pub(super) fn scroll_right(&mut self, bus: &mut (impl Read<u128> + Write<u128>)) {
// Get a line from the bus
for i in (0..16 * 64).step_by(16) {
//let line: u128 = bus.read(self.screen + i) >> 4;
bus.write(self.screen + i, bus.read(self.screen + i) >> 4);
}
}
/// |`00fc`| Scroll the screen right
#[inline(always)]
pub(super) fn scroll_left(&mut self, bus: &mut (impl Read<u128> + Write<u128>)) {
// Get a line from the bus
for i in (0..16 * 64).step_by(16) {
let line: u128 = (bus.read(self.screen + i) & !(0xf << 124)) << 4;
bus.write(self.screen + i, line);
}
}
/// |`Dxyn`|
/// Super-Chip extension high-resolution graphics mode
#[inline(always)]
pub(super) fn draw_hires(&mut self, x: Reg, y: Reg, n: Nib, bus: &mut Bus) {
if !self.flags.quirks.draw_wait {
self.flags.draw_wait = true;
}
let (w, h) = match self.flags.draw_mode {
true => (128, 64),
false => (64, 32),
};
let (x, y) = (self.v[x] as u16 % w, self.v[y] as u16 % h);
match n {
0 => self.draw_schip_sprite(x, y, w, bus),
_ => self.draw_sprite(x, y, n, w, h, bus),
}
}
/// Draws a 16x16 Super Chip sprite
#[inline(always)]
pub(super) fn draw_schip_sprite(&mut self, x: u16, y: u16, w: u16, bus: &mut Bus) {
self.v[0xf] = 0;
let w_bytes = w / 8;
if let Some(sprite) = bus.get(self.i as usize..(self.i + 32) as usize) {
let sprite = sprite.to_owned();
for (line, sprite) in sprite.chunks(2).enumerate() {
let sprite = u16::from_be_bytes(
sprite
.try_into()
.expect("Chunks should only return 2 bytes"),
);
let addr = (y + line as u16) * w_bytes + x / 8 + self.screen;
let sprite = (sprite as u32) << (16 - (x % 8));
let screen: u32 = bus.read(addr);
bus.write(addr, screen ^ sprite);
if screen & sprite != 0 {
self.v[0xf] += 1;
}
}
}
}
/// |`Fx30`| (Super-Chip) 16x16 equivalent of Fx29
///
/// TODO: Actually make and import the 16x font
#[inline(always)]
pub(super) fn load_big_sprite(&mut self, x: Reg) {
self.i = self.font + (5 * 8) + (16 * (self.v[x] as Adr % 0x10));
}
/// |`Fx75`| (Super-Chip) Save to "flag registers"
/// I just chuck it in 0x0..0xf. Screw it.
#[inline(always)]
pub(super) fn store_flags(&mut self, x: Reg, bus: &mut Bus) {
// TODO: Save these, maybe
for (reg, value) in bus
.get_mut(0..=x)
.unwrap_or_default()
.iter_mut()
.enumerate()
{
*value = self.v[reg]
}
}
/// |`Fx85`| (Super-Chip) Load from "flag registers"
/// I just chuck it in 0x0..0xf. Screw it.
#[inline(always)]
pub(super) fn load_flags(&mut self, x: Reg, bus: &mut Bus) {
for (reg, value) in bus.get(0..=x).unwrap_or_default().iter().enumerate() {
self.v[reg] = *value;
}
}
/// Initialize lores mode
pub(super) fn init_lores(&mut self, bus: &mut Bus) {
self.flags.draw_mode = false;
let scraddr = self.screen as usize;
bus.set_region(Region::Screen, scraddr..scraddr + 256);
self.clear_screen(bus);
}
/// Initialize hires mode
pub(super) fn init_hires(&mut self, bus: &mut Bus) {
self.flags.draw_mode = true;
let scraddr = self.screen as usize;
bus.set_region(Region::Screen, scraddr..scraddr + 1024);
self.clear_screen(bus);
}
}

34
src/cpu/mode.rs Normal file
View File

@ -0,0 +1,34 @@
//! Selects the memory behavior of the [super::CPU]
//!
//! Since [super::Quirks] implements [From<Mode>],
//! this can be used to select the appropriate quirk-set
use crate::error::Error;
use std::str::FromStr;
/// Selects the memory behavior of the interpreter
#[derive(Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum Mode {
/// VIP emulation mode
#[default]
Chip8,
/// Chip-48 emulation mode
SChip,
/// XO-Chip emulation mode
XOChip,
}
impl FromStr for Mode {
type Err = Error;
fn from_str(s: &str) -> std::result::Result<Self, Self::Err> {
match s.to_lowercase().as_str() {
"chip8" | "chip-8" => Ok(Mode::Chip8),
"schip" | "superchip" => Ok(Mode::SChip),
"xo-chip" | "xochip" => Ok(Mode::XOChip),
_ => Err(Error::InvalidMode {
mode: s.to_string(),
}),
}
}
}

60
src/cpu/quirks.rs Normal file
View File

@ -0,0 +1,60 @@
//! Controls the [Quirks] behavior of the CPU on a granular level.
use super::Mode;
/// Controls the authenticity behavior of the CPU on a granular level.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Quirks {
/// Binary ops in `8xy`(`1`, `2`, `3`) shouldn't set vF to 0
pub bin_ops: bool,
/// Shift ops in `8xy`(`6`, `E`) shouldn't source from vY instead of vX
pub shift: bool,
/// Draw operations shouldn't pause execution until the next timer tick
pub draw_wait: bool,
/// DMA instructions `Fx55`/`Fx65` shouldn't change I to I + x + 1
pub dma_inc: bool,
/// Indexed jump instructions should go to `adr` + v`a` where `a` is high nibble of `adr`.
pub stupid_jumps: bool,
}
impl From<bool> for Quirks {
fn from(value: bool) -> Self {
if value {
Quirks {
bin_ops: true,
shift: true,
draw_wait: true,
dma_inc: true,
stupid_jumps: true,
}
} else {
Quirks {
bin_ops: false,
shift: false,
draw_wait: false,
dma_inc: false,
stupid_jumps: false,
}
}
}
}
impl From<Mode> for Quirks {
fn from(value: Mode) -> Self {
match value {
Mode::Chip8 => false.into(),
Mode::SChip => true.into(),
Mode::XOChip => Self {
bin_ops: true,
shift: false,
draw_wait: true,
dma_inc: false,
stupid_jumps: false,
},
}
}
}
impl Default for Quirks {
fn default() -> Self {
Self::from(false)
}
}

View File

@ -1,7 +1,7 @@
// (c) 2023 John A. Breaux
// This code is licensed under MIT license (see LICENSE.txt for details)
//! Tests for cpu.rs
//! Unit tests for [super::CPU]
//!
//! These run instructions, and ensure their output is consistent with previous builds
//!
@ -23,7 +23,7 @@ mod decode;
fn setup_environment() -> (CPU, Bus) {
(
CPU {
flags: ControlFlags {
flags: Flags {
debug: true,
pause: false,
monotonic: Some(8),

View File

@ -52,12 +52,19 @@ pub enum Error {
/// The offending register
reg: usize,
},
/// Tried to convert string into mode, but it did not match.
#[error("Invalid mode: {mode}")]
InvalidMode {
/// The string which failed to become a mode
mode: String,
},
/// Error originated in [std::io]
#[error(transparent)]
IoError(#[from] std::io::Error),
/// Error originated in [std::array::TryFromSliceError]
#[error(transparent)]
TryFromSliceError(#[from] std::array::TryFromSliceError),
#[cfg(feature = "minifb")]
/// Error originated in [minifb]
#[error(transparent)]
MinifbError(#[from] minifb::Error),

View File

@ -14,8 +14,14 @@ pub mod error;
// Common imports for Chirp
pub use bus::{Bus, Read, Region::*, Write};
pub use cpu::{disassembler::Dis, ControlFlags, CPU};
pub use error::Result;
pub use cpu::{
disassembler::{Dis, Disassembler},
flags::Flags,
mode::Mode,
quirks::Quirks,
CPU,
};
pub use error::{Error, Result};
/// Holds the state of a Chip-8
#[derive(Clone, Debug, Default, PartialEq)]

View File

@ -4,7 +4,7 @@ pub use chirp::*;
fn setup_environment() -> (CPU, Bus) {
let mut cpu = CPU::default();
cpu.flags = ControlFlags {
cpu.flags = Flags {
debug: true,
pause: false,
monotonic: Some(8),
@ -17,7 +17,7 @@ fn setup_environment() -> (CPU, Bus) {
Charset [0x0050..0x00A0] = include_bytes!("../src/mem/charset.bin"),
// Load the ROM file into RAM
Program [0x0200..0x1000] = include_bytes!("../chip8-test-suite/bin/chip8-test-suite.ch8"),
// Create a screen, and fill it with garbage data
// Create a screen, and fill it with
Screen [0x0F00..0x1000] = include_bytes!("chip8_test_suite.rs"),
},
)

View File

@ -126,70 +126,64 @@ mod cpu {
//#[derive(Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[test]
fn clone() {
let cf1 = ControlFlags {
let cf1 = Flags {
debug: false,
pause: false,
keypause: false,
draw_wait: false,
lastkey: None,
quirks: Default::default(),
monotonic: None,
..Default::default()
};
let cf2 = cf1.clone();
assert_eq!(cf1, cf2)
}
#[test]
fn debug() {
println!("{:?}", ControlFlags::default());
println!("{:?}", Flags::default());
}
#[test]
fn default() {
assert_eq!(
ControlFlags::default(),
ControlFlags {
Flags::default(),
Flags {
debug: false,
pause: false,
keypause: false,
draw_wait: false,
lastkey: Default::default(),
quirks: Default::default(),
monotonic: Default::default()
..Default::default()
}
)
}
#[test]
fn eq() {
let cf1 = ControlFlags::default();
let cf2 = ControlFlags {
let cf1 = Flags::default();
let cf2 = Flags {
debug: true,
pause: true,
keypause: true,
draw_wait: true,
lastkey: Default::default(),
quirks: Default::default(),
monotonic: Default::default(),
..Default::default()
};
assert_ne!(cf1, cf2);
}
#[test]
fn ord() {
let cf1 = ControlFlags::default();
let cf2 = ControlFlags {
let cf1 = Flags::default();
let cf2 = Flags {
debug: true,
pause: true,
keypause: true,
draw_wait: true,
lastkey: Default::default(),
quirks: Default::default(),
monotonic: Default::default(),
..Default::default()
};
assert!(cf1 < cf2);
assert_eq!(ControlFlags::default(), cf1.min(cf2));
assert_eq!(Flags::default(), cf1.min(cf2));
}
#[test]
fn hash() {
let mut hasher = DefaultHasher::new();
ControlFlags::default().hash(&mut hasher);
Flags::default().hash(&mut hasher);
println!("{:?}", hasher);
}
}
@ -221,7 +215,7 @@ fn error() {
mod quirks {
use super::*;
use chirp::cpu::Quirks;
use chirp::cpu::quirks::Quirks;
#[test]
fn from_true() {
@ -233,7 +227,7 @@ mod quirks {
shift: true,
draw_wait: true,
dma_inc: true,
stupid_jumps: false,
stupid_jumps: true,
}
)
}