Quirks: Make the Cosmac VIP behavior default.

This commit is contained in:
John 2023-04-01 00:15:40 -05:00
parent 7173b9e39b
commit bb8015f33c
5 changed files with 359 additions and 239 deletions

View File

@ -117,10 +117,10 @@ impl State {
options.breakpoints,
ControlFlags {
quirks: chirp::cpu::Quirks {
bin_ops: !options.vfreset,
shift: !options.shift,
draw_wait: !options.drawsync,
dma_inc: !options.memory,
bin_ops: options.vfreset,
shift: options.shift,
draw_wait: options.drawsync,
dma_inc: options.memory,
stupid_jumps: options.jumping,
},
debug: options.debug,

View File

@ -29,17 +29,17 @@ type Adr = u16;
type Nib = u8;
/// Controls the authenticity behavior of the CPU on a granular level.
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Quirks {
/// Binary ops in `8xy`(`1`, `2`, `3`) should set vF to 0
/// Binary ops in `8xy`(`1`, `2`, `3`) shouldn't set vF to 0
pub bin_ops: bool,
/// Shift ops in `8xy`(`6`, `E`) should source from vY instead of vX
/// Shift ops in `8xy`(`6`, `E`) shouldn't source from vY instead of vX
pub shift: bool,
/// Draw operations should pause execution until the next timer tick
/// Draw operations shouldn't pause execution until the next timer tick
pub draw_wait: bool,
/// DMA instructions `Fx55`/`Fx65` should change I to I + x + 1
/// DMA instructions `Fx55`/`Fx65` shouldn't change I to I + x + 1
pub dma_inc: bool,
/// Indexed jump instructions should go to ADR + v`N` where `N` is high nibble of adr
/// Indexed jump instructions should go to `adr` + v`a` where `a` is high nibble of `adr`.
pub stupid_jumps: bool,
}
@ -593,42 +593,7 @@ impl CPU {
// decode opcode
if let Ok((inc, insn)) = Insn::decode(opcode) {
self.pc = self.pc.wrapping_add(inc as u16);
match insn {
Insn::cls => self.clear_screen(bus),
Insn::ret => self.ret(bus),
Insn::jmp { A } => self.jump(A),
Insn::call { A } => self.call(A, bus),
Insn::seb { B, x } => self.skip_equals_immediate(x, B),
Insn::sneb { B, x } => self.skip_not_equals_immediate(x, B),
Insn::se { y, x } => self.skip_equals(x, y),
Insn::movb { B, x } => self.load_immediate(x, B),
Insn::addb { B, x } => self.add_immediate(x, B),
Insn::mov { x, y } => self.load(x, y),
Insn::or { y, x } => self.or(x, y),
Insn::and { y, x } => self.and(x, y),
Insn::xor { y, x } => self.xor(x, y),
Insn::add { y, x } => self.add(x, y),
Insn::sub { y, x } => self.sub(x, y),
Insn::shr { y, x } => self.shift_right(x, y),
Insn::bsub { y, x } => self.backwards_sub(x, y),
Insn::shl { y, x } => self.shift_left(x, y),
Insn::sne { y, x } => self.skip_not_equals(x, y),
Insn::movI { A } => self.load_i_immediate(A),
Insn::jmpr { A } => self.jump_indexed(A),
Insn::rand { B, x } => self.rand(x, B),
Insn::draw { x, y, n } => self.draw(x, y, n, bus),
Insn::sek { x } => self.skip_key_equals(x),
Insn::snek { x } => self.skip_key_not_equals(x),
Insn::getdt { x } => self.load_delay_timer(x),
Insn::waitk { x } => self.wait_for_key(x),
Insn::setdt { x } => self.store_delay_timer(x),
Insn::movst { x } => self.store_sound_timer(x),
Insn::addI { x } => self.add_i(x),
Insn::font { x } => self.load_sprite(x),
Insn::bcd { x } => self.bcd_convert(x, bus),
Insn::dmao { x } => self.store_dma(x, bus),
Insn::dmai { x } => self.load_dma(x, bus),
}
self.execute(bus, insn);
} else {
return Err(Error::UnimplementedInstruction {
word: u16::from_be_bytes(*opcode),
@ -727,23 +692,65 @@ impl Default for CPU {
// Below this point, comments may be duplicated per impl' block,
// since some opcodes handle multiple instructions.
// | 0aaa | Issues a "System call" (ML routine)
impl CPU {
/// Executes a single [Insn]
#[inline(always)]
#[rustfmt::skip]
fn execute(&mut self, bus: &mut Bus, instruction: Insn) {
match instruction {
Insn::cls => self.clear_screen(bus),
Insn::ret => self.ret(bus),
Insn::jmp { A } => self.jump(A),
Insn::call { A } => self.call(A, bus),
Insn::seb { B, x } => self.skip_equals_immediate(x, B),
Insn::sneb { B, x } => self.skip_not_equals_immediate(x, B),
Insn::se { y, x } => self.skip_equals(x, y),
Insn::movb { B, x } => self.load_immediate(x, B),
Insn::addb { B, x } => self.add_immediate(x, B),
Insn::mov { x, y } => self.load(x, y),
Insn::or { y, x } => self.or(x, y),
Insn::and { y, x } => self.and(x, y),
Insn::xor { y, x } => self.xor(x, y),
Insn::add { y, x } => self.add(x, y),
Insn::sub { y, x } => self.sub(x, y),
Insn::shr { y, x } => self.shift_right(x, y),
Insn::bsub { y, x } => self.backwards_sub(x, y),
Insn::shl { y, x } => self.shift_left(x, y),
Insn::sne { y, x } => self.skip_not_equals(x, y),
Insn::movI { A } => self.load_i_immediate(A),
Insn::jmpr { A } => self.jump_indexed(A),
Insn::rand { B, x } => self.rand(x, B),
Insn::draw { x, y, n } => self.draw(x, y, n, bus),
Insn::sek { x } => self.skip_key_equals(x),
Insn::snek { x } => self.skip_key_not_equals(x),
Insn::getdt { x } => self.load_delay_timer(x),
Insn::waitk { x } => self.wait_for_key(x),
Insn::setdt { x } => self.store_delay_timer(x),
Insn::movst { x } => self.store_sound_timer(x),
Insn::addI { x } => self.add_i(x),
Insn::font { x } => self.load_sprite(x),
Insn::bcd { x } => self.bcd_convert(x, bus),
Insn::dmao { x } => self.store_dma(x, bus),
Insn::dmai { x } => self.load_dma(x, bus),
}
}
}
// |`0aaa`| Issues a "System call" (ML routine)
//
// |opcode| effect |
// |------|------------------------------------|
// | 00e0 | Clear screen memory to all 0 |
// | 00ee | Return from subroutine |
// |`00e0`| Clear screen memory to all 0 |
// |`00ee`| Return from subroutine |
impl CPU {
/// 00e0: Clears the screen memory to 0
/// |`00e0`| Clears the screen memory to 0
#[inline(always)]
fn clear_screen(&mut self, bus: &mut Bus) {
if let Some(screen) = bus.get_region_mut(Region::Screen) {
for byte in screen {
*byte = 0;
}
screen.fill(0);
}
}
/// 00ee: Returns from subroutine
/// |`00ee`| Returns from subroutine
#[inline(always)]
fn ret(&mut self, bus: &impl Read<u16>) {
self.sp = self.sp.wrapping_add(2);
@ -751,9 +758,9 @@ impl CPU {
}
}
// | 1aaa | Sets pc to an absolute address
// |`1aaa`| Sets pc to an absolute address
impl CPU {
/// 1aaa: Sets the program counter to an absolute address
/// |`1aaa`| Sets the program counter to an absolute address
#[inline(always)]
fn jump(&mut self, a: Adr) {
// jump to self == halt
@ -764,9 +771,9 @@ impl CPU {
}
}
// | 2aaa | Pushes pc onto the stack, then jumps to a
// |`2aaa`| Pushes pc onto the stack, then jumps to a
impl CPU {
/// 2aaa: Pushes pc onto the stack, then jumps to a
/// |`2aaa`| Pushes pc onto the stack, then jumps to a
#[inline(always)]
fn call(&mut self, a: Adr, bus: &mut impl Write<u16>) {
bus.write(self.sp, self.pc);
@ -775,9 +782,9 @@ impl CPU {
}
}
// | 3xbb | Skips next instruction if register X == b
// |`3xbb`| Skips next instruction if register X == b
impl CPU {
/// 3xbb: Skips the next instruction if register X == b
/// |`3xbb`| Skips the next instruction if register X == b
#[inline(always)]
fn skip_equals_immediate(&mut self, x: Reg, b: u8) {
if self.v[x] == b {
@ -786,9 +793,9 @@ impl CPU {
}
}
// | 4xbb | Skips next instruction if register X != b
// |`4xbb`| Skips next instruction if register X != b
impl CPU {
/// 4xbb: Skips the next instruction if register X != b
/// |`4xbb`| Skips the next instruction if register X != b
#[inline(always)]
fn skip_not_equals_immediate(&mut self, x: Reg, b: u8) {
if self.v[x] != b {
@ -797,13 +804,13 @@ impl CPU {
}
}
// | 5xyn | Performs a register-register comparison
// |`5xyn`| Performs a register-register comparison
//
// |opcode| effect |
// |------|------------------------------------|
// | 5XY0 | Skip next instruction if vX == vY |
// |`5XY0`| Skip next instruction if vX == vY |
impl CPU {
/// 5xy0: Skips the next instruction if register X != register Y
/// |`5xy0`| Skips the next instruction if register X != register Y
#[inline(always)]
fn skip_equals(&mut self, x: Reg, y: Reg) {
if self.v[x] == self.v[y] {
@ -812,102 +819,102 @@ impl CPU {
}
}
// | 6xbb | Loads immediate byte b into register vX
// |`6xbb`| Loads immediate byte b into register vX
impl CPU {
/// 6xbb: Loads immediate byte b into register vX
/// |`6xbb`| Loads immediate byte b into register vX
#[inline(always)]
fn load_immediate(&mut self, x: Reg, b: u8) {
self.v[x] = b;
}
}
// | 7xbb | Adds immediate byte b to register vX
// |`7xbb`| Adds immediate byte b to register vX
impl CPU {
/// 7xbb: Adds immediate byte b to register vX
/// |`7xbb`| Adds immediate byte b to register vX
#[inline(always)]
fn add_immediate(&mut self, x: Reg, b: u8) {
self.v[x] = self.v[x].wrapping_add(b);
}
}
// | 8xyn | Performs ALU operation
// |`8xyn`| Performs ALU operation
//
// |opcode| effect |
// |------|------------------------------------|
// | 8xy0 | Y = X |
// | 8xy1 | X = X | Y |
// | 8xy2 | X = X & Y |
// | 8xy3 | X = X ^ Y |
// | 8xy4 | X = X + Y; Set vF=carry |
// | 8xy5 | X = X - Y; Set vF=carry |
// | 8xy6 | X = X >> 1 |
// | 8xy7 | X = Y - X; Set vF=carry |
// | 8xyE | X = X << 1 |
// |`8xy0`| Y = X |
// |`8xy1`| X = X | Y |
// |`8xy2`| X = X & Y |
// |`8xy3`| X = X ^ Y |
// |`8xy4`| X = X + Y; Set vF=carry |
// |`8xy5`| X = X - Y; Set vF=carry |
// |`8xy6`| X = X >> 1 |
// |`8xy7`| X = Y - X; Set vF=carry |
// |`8xyE`| X = X << 1 |
impl CPU {
/// 8xy0: Loads the value of y into x
/// |`8xy0`| Loads the value of y into x
#[inline(always)]
fn load(&mut self, x: Reg, y: Reg) {
self.v[x] = self.v[y];
}
/// 8xy1: Performs bitwise or of vX and vY, and stores the result in vX
/// |`8xy1`| Performs bitwise or of vX and vY, and stores the result in vX
///
/// # Quirk
/// The original chip-8 interpreter will clobber vF for any 8-series instruction
#[inline(always)]
fn or(&mut self, x: Reg, y: Reg) {
self.v[x] |= self.v[y];
if self.flags.quirks.bin_ops {
if !self.flags.quirks.bin_ops {
self.v[0xf] = 0;
}
}
/// 8xy2: Performs bitwise and of vX and vY, and stores the result in vX
/// |`8xy2`| Performs bitwise and of vX and vY, and stores the result in vX
///
/// # Quirk
/// The original chip-8 interpreter will clobber vF for any 8-series instruction
#[inline(always)]
fn and(&mut self, x: Reg, y: Reg) {
self.v[x] &= self.v[y];
if self.flags.quirks.bin_ops {
if !self.flags.quirks.bin_ops {
self.v[0xf] = 0;
}
}
/// 8xy3: Performs bitwise xor of vX and vY, and stores the result in vX
/// |`8xy3`| Performs bitwise xor of vX and vY, and stores the result in vX
///
/// # Quirk
/// The original chip-8 interpreter will clobber vF for any 8-series instruction
#[inline(always)]
fn xor(&mut self, x: Reg, y: Reg) {
self.v[x] ^= self.v[y];
if self.flags.quirks.bin_ops {
if !self.flags.quirks.bin_ops {
self.v[0xf] = 0;
}
}
/// 8xy4: Performs addition of vX and vY, and stores the result in vX
/// |`8xy4`| Performs addition of vX and vY, and stores the result in vX
#[inline(always)]
fn add(&mut self, x: Reg, y: Reg) {
let carry;
(self.v[x], carry) = self.v[x].overflowing_add(self.v[y]);
self.v[0xf] = carry.into();
}
/// 8xy5: Performs subtraction of vX and vY, and stores the result in vX
/// |`8xy5`| Performs subtraction of vX and vY, and stores the result in vX
#[inline(always)]
fn sub(&mut self, x: Reg, y: Reg) {
let carry;
(self.v[x], carry) = self.v[x].overflowing_sub(self.v[y]);
self.v[0xf] = (!carry).into();
}
/// 8xy6: Performs bitwise right shift of vX
/// |`8xy6`| Performs bitwise right shift of vX
///
/// # Quirk
/// On the original chip-8 interpreter, this shifts vY and stores the result in vX
#[inline(always)]
fn shift_right(&mut self, x: Reg, y: Reg) {
let src: Reg = if self.flags.quirks.shift { y } else { x };
let src: Reg = if self.flags.quirks.shift { x } else { y };
let shift_out = self.v[src] & 1;
self.v[x] = self.v[src] >> 1;
self.v[0xf] = shift_out;
}
/// 8xy7: Performs subtraction of vY and vX, and stores the result in vX
/// |`8xy7`| Performs subtraction of vY and vX, and stores the result in vX
#[inline(always)]
fn backwards_sub(&mut self, x: Reg, y: Reg) {
let carry;
@ -921,20 +928,20 @@ impl CPU {
/// and store the result in vX. This behavior was left out, for now.
#[inline(always)]
fn shift_left(&mut self, x: Reg, y: Reg) {
let src: Reg = if self.flags.quirks.shift { y } else { x };
let src: Reg = if self.flags.quirks.shift { x } else { y };
let shift_out: u8 = self.v[src] >> 7;
self.v[x] = self.v[src] << 1;
self.v[0xf] = shift_out;
}
}
// | 9xyn | Performs a register-register comparison
// |`9xyn`| Performs a register-register comparison
//
// |opcode| effect |
// |------|------------------------------------|
// | 9XY0 | Skip next instruction if vX != vY |
// |`9XY0`| Skip next instruction if vX != vY |
impl CPU {
/// 9xy0: Skip next instruction if X != y
/// |`9xy0`| Skip next instruction if X != y
#[inline(always)]
fn skip_not_equals(&mut self, x: Reg, y: Reg) {
if self.v[x] != self.v[y] {
@ -943,18 +950,18 @@ impl CPU {
}
}
// | Aaaa | Load address #a into register I
// |`Aaaa`| Load address #a into register I
impl CPU {
/// Aadr: Load address #adr into register I
/// |`Aadr`| Load address #adr into register I
#[inline(always)]
fn load_i_immediate(&mut self, a: Adr) {
self.i = a;
}
}
// | Baaa | Jump to &adr + v0
// |`Baaa`| Jump to &adr + v0
impl CPU {
/// Badr: Jump to &adr + v0
/// |`Badr`| Jump to &adr + v0
///
/// Quirk:
/// On the Super-Chip, this does stupid shit
@ -969,25 +976,25 @@ impl CPU {
}
}
// | Cxbb | Stores a random number & the provided byte into vX
// |`Cxbb`| Stores a random number & the provided byte into vX
impl CPU {
/// Cxbb: Stores a random number & the provided byte into vX
/// |`Cxbb`| Stores a random number & the provided byte into vX
#[inline(always)]
fn rand(&mut self, x: Reg, b: u8) {
self.v[x] = random::<u8>() & b;
}
}
// | Dxyn | Draws n-byte sprite to the screen at coordinates (vX, vY)
// |`Dxyn`| Draws n-byte sprite to the screen at coordinates (vX, vY)
impl CPU {
/// Dxyn: Draws n-byte sprite to the screen at coordinates (vX, vY)
/// |`Dxyn`| Draws n-byte sprite to the screen at coordinates (vX, vY)
///
/// # Quirk
/// On the original chip-8 interpreter, this will wait for a VBI
#[inline(always)]
fn draw(&mut self, x: Reg, y: Reg, n: Nib, bus: &mut Bus) {
let (x, y) = (self.v[x] as u16 % 64, self.v[y] as u16 % 32);
if self.flags.quirks.draw_wait {
if !self.flags.quirks.draw_wait {
self.flags.draw_wait = true;
}
self.v[0xf] = 0;
@ -1015,14 +1022,14 @@ impl CPU {
}
}
// | Exbb | Skips instruction on value of keypress
// |`Exbb`| Skips instruction on value of keypress
//
// |opcode| effect |
// |------|------------------------------------|
// | eX9e | Skip next instruction if key == vX |
// | eXa1 | Skip next instruction if key != vX |
// |`eX9e`| Skip next instruction if key == vX |
// |`eXa1`| Skip next instruction if key != vX |
impl CPU {
/// Ex9E: Skip next instruction if key == vX
/// |`Ex9E`| Skip next instruction if key == vX
#[inline(always)]
fn skip_key_equals(&mut self, x: Reg) {
let x = self.v[x] as usize;
@ -1030,7 +1037,7 @@ impl CPU {
self.pc += 2;
}
}
/// ExaE: Skip next instruction if key != vX
/// |`ExaE`| Skip next instruction if key != vX
#[inline(always)]
fn skip_key_not_equals(&mut self, x: Reg) {
let x = self.v[x] as usize;
@ -1040,21 +1047,21 @@ impl CPU {
}
}
// | Fxbb | Performs IO
// |`Fxbb`| Performs IO
//
// |opcode| effect |
// |------|------------------------------------|
// | fX07 | Set vX to value in delay timer |
// | fX0a | Wait for input, store key in vX |
// | fX15 | Set sound timer to the value in vX |
// | fX18 | set delay timer to the value in vX |
// | fX1e | Add vX to I |
// | fX29 | Load sprite for character x into I |
// | fX33 | BCD convert X into I[0..3] |
// | fX55 | DMA Stor from I to registers 0..=X |
// | fX65 | DMA Load from I to registers 0..=X |
// |`fX07`| Set vX to value in delay timer |
// |`fX0a`| Wait for input, store key in vX |
// |`fX15`| Set sound timer to the value in vX |
// |`fX18`| set delay timer to the value in vX |
// |`fX1e`| Add vX to I |
// |`fX29`| Load sprite for character x into I |
// |`fX33`| BCD convert X into I[0..3] |
// |`fX55`| DMA Stor from I to registers 0..=X |
// |`fX65`| DMA Load from I to registers 0..=X |
impl CPU {
/// Fx07: Get the current DT, and put it in vX
/// |`Fx07`| Get the current DT, and put it in vX
/// ```py
/// vX = DT
/// ```
@ -1062,7 +1069,7 @@ impl CPU {
fn load_delay_timer(&mut self, x: Reg) {
self.v[x] = self.delay as u8;
}
/// Fx0A: Wait for key, then vX = K
/// |`Fx0A`| Wait for key, then vX = K
#[inline(always)]
fn wait_for_key(&mut self, x: Reg) {
if let Some(key) = self.flags.lastkey {
@ -1073,7 +1080,7 @@ impl CPU {
self.flags.keypause = true;
}
}
/// Fx15: Load vX into DT
/// |`Fx15`| Load vX into DT
/// ```py
/// DT = vX
/// ```
@ -1081,7 +1088,7 @@ impl CPU {
fn store_delay_timer(&mut self, x: Reg) {
self.delay = self.v[x] as f64;
}
/// Fx18: Load vX into ST
/// |`Fx18`| Load vX into ST
/// ```py
/// ST = vX;
/// ```
@ -1089,7 +1096,7 @@ impl CPU {
fn store_sound_timer(&mut self, x: Reg) {
self.sound = self.v[x] as f64;
}
/// Fx1e: Add vX to I,
/// |`Fx1e`| Add vX to I,
/// ```py
/// I += vX;
/// ```
@ -1097,7 +1104,7 @@ impl CPU {
fn add_i(&mut self, x: Reg) {
self.i += self.v[x] as u16;
}
/// Fx29: Load sprite for character x into I
/// |`Fx29`| Load sprite for character x into I
/// ```py
/// I = sprite(X);
/// ```
@ -1105,7 +1112,7 @@ impl CPU {
fn load_sprite(&mut self, x: Reg) {
self.i = self.font + (5 * (self.v[x] as Adr % 0x10));
}
/// Fx33: BCD convert X into I`[0..3]`
/// |`Fx33`| BCD convert X into I`[0..3]`
#[inline(always)]
fn bcd_convert(&mut self, x: Reg, bus: &mut Bus) {
let x = self.v[x];
@ -1113,7 +1120,7 @@ impl CPU {
bus.write(self.i.wrapping_add(1), x / 10 % 10);
bus.write(self.i, x / 100 % 10);
}
/// Fx55: DMA Stor from I to registers 0..=X
/// |`Fx55`| DMA Stor from I to registers 0..=X
///
/// # Quirk
/// The original chip-8 interpreter uses I to directly index memory,
@ -1129,11 +1136,11 @@ impl CPU {
{
*value = self.v[reg]
}
if self.flags.quirks.dma_inc {
if !self.flags.quirks.dma_inc {
self.i += x as Adr + 1;
}
}
/// Fx65: DMA Load from I to registers 0..=X
/// |`Fx65`| DMA Load from I to registers 0..=X
///
/// # Quirk
/// The original chip-8 interpreter uses I to directly index memory,
@ -1144,7 +1151,7 @@ impl CPU {
for (reg, value) in bus.get(i..=i + x).unwrap_or_default().iter().enumerate() {
self.v[reg] = *value;
}
if self.flags.quirks.dma_inc {
if !self.flags.quirks.dma_inc {
self.i += x as Adr + 1;
}
}

View File

@ -331,66 +331,136 @@ mod math {
}
}
}
mod or {
use super::*;
/// 8xy1: Performs bitwise or of vX and vY, and stores the result in vX
// TODO: Test with bin_ops quirk flag set
#[test]
fn or_inaccurate() {
let (mut cpu, _) = setup_environment();
cpu.flags.quirks.bin_ops = false;
for word in 0..=0xffff {
let (a, b) = (word as u8, (word >> 4) as u8);
let expected_result = a | b;
for reg in 0..=0xff {
let (x, y) = (reg & 0xf, reg >> 4);
/// 8xy1: Performs bitwise or of vX and vY, and stores the result in vX
#[test]
fn or() {
let (mut cpu, _) = setup_environment();
for word in 0..=0xffff {
let (a, b) = (word as u8, (word >> 4) as u8);
let expected_result = a | b;
for reg in 0..=0xff {
let (x, y) = (reg & 0xf, reg >> 4);
(cpu.v[x], cpu.v[y]) = (a, b);
cpu.v[0xf] = 0xc5; // sentinel
(cpu.v[x], cpu.v[y]) = (a, b);
cpu.or(x, y);
cpu.or(x, y);
assert_eq!(cpu.v[x], if x == y { b } else { expected_result });
if x != 0xf {
assert_eq!(cpu.v[x], if x == y { b } else { expected_result });
}
assert_eq!(cpu.v[0xf], 0);
}
}
}
/// Same test, with [Quirks::bin_ops] flag set
#[test]
fn or_quirk() {
let (mut cpu, _) = setup_environment();
cpu.flags.quirks.bin_ops = true;
for word in 0..=0xffff {
let (a, b) = (word as u8, (word >> 4) as u8);
let expected_result = a | b;
for reg in 0..=0xff {
let (x, y) = (reg & 0xf, reg >> 4);
(cpu.v[x], cpu.v[y]) = (a, b);
cpu.or(x, y);
assert_eq!(cpu.v[x], if x == y { b } else { expected_result });
}
}
}
}
/// 8xy2: Performs bitwise and of vX and vY, and stores the result in vX
// TODO: Test with bin_ops quirk flag set
#[test]
fn and_inaccurate() {
let (mut cpu, _) = setup_environment();
cpu.flags.quirks.bin_ops = false;
for word in 0..=0xffff {
let (a, b) = (word as u8, (word >> 4) as u8);
let expected_result = a & b;
for reg in 0..=0xff {
let (x, y) = (reg & 0xf, reg >> 4);
mod and {
use super::*;
/// 8xy2: Performs bitwise and of vX and vY, and stores the result in vX
#[test]
fn and() {
let (mut cpu, _) = setup_environment();
for word in 0..=0xffff {
let (a, b) = (word as u8, (word >> 4) as u8);
let expected_result = a & b;
for reg in 0..=0xff {
let (x, y) = (reg & 0xf, reg >> 4);
(cpu.v[x], cpu.v[y]) = (a, b);
cpu.v[0xf] = 0xc5; // Sentinel
(cpu.v[x], cpu.v[y]) = (a, b);
cpu.and(x, y);
cpu.and(x, y);
if x != 0xf {
assert_eq!(cpu.v[x], if x == y { b } else { expected_result });
}
assert_eq!(cpu.v[0xf], 0)
}
}
}
// The same test with [Quirks::bin_ops] flag set
#[test]
fn and_quirk() {
let (mut cpu, _) = setup_environment();
cpu.flags.quirks.bin_ops = true;
for word in 0..=0xffff {
let (a, b) = (word as u8, (word >> 4) as u8);
let expected_result = a & b;
for reg in 0..=0xff {
let (x, y) = (reg & 0xf, reg >> 4);
assert_eq!(cpu.v[x], if x == y { b } else { expected_result });
(cpu.v[x], cpu.v[y]) = (a, b);
cpu.and(x, y);
assert_eq!(cpu.v[x], if x == y { b } else { expected_result });
}
}
}
}
mod xor {
use super::*;
/// 8xy3: Performs bitwise xor of vX and vY, and stores the result in vX
// TODO: Test with bin_ops quirk flag set
#[test]
fn xor_inaccurate() {
let (mut cpu, _) = setup_environment();
cpu.flags.quirks.bin_ops = false;
for word in 0..=0xffff {
let (a, b) = (word as u8, (word >> 4) as u8);
let expected_result = a ^ b;
for reg in 0..=0xff {
let (x, y) = (reg & 0xf, reg >> 4);
/// 8xy3: Performs bitwise xor of vX and vY, and stores the result in vX
#[test]
fn xor() {
let (mut cpu, _) = setup_environment();
for word in 0..=0xffff {
let (a, b) = (word as u8, (word >> 4) as u8);
let expected_result = a ^ b;
for reg in 0..=0xff {
let (x, y) = (reg & 0xf, reg >> 4);
(cpu.v[x], cpu.v[y]) = (a, b);
cpu.v[0xf] = 0xc5; // Sentinel
(cpu.v[x], cpu.v[y]) = (a, b);
cpu.xor(x, y);
cpu.xor(x, y);
if x != 0xf {
assert_eq!(cpu.v[x], if x == y { 0 } else { expected_result });
}
assert_eq!(cpu.v[0xf], 0);
}
}
}
// The same test with [Quirks::bin_ops] flag set
#[test]
fn xor_quirk() {
let (mut cpu, _) = setup_environment();
cpu.flags.quirks.bin_ops = true;
for word in 0..=0xffff {
let (a, b) = (word as u8, (word >> 4) as u8);
let expected_result = a ^ b;
for reg in 0..=0xff {
let (x, y) = (reg & 0xf, reg >> 4);
assert_eq!(cpu.v[x], if x == y { 0 } else { expected_result });
(cpu.v[x], cpu.v[y]) = (a, b);
cpu.xor(x, y);
assert_eq!(cpu.v[x], if x == y { 0 } else { expected_result });
}
}
}
}
@ -445,25 +515,49 @@ mod math {
}
}
}
mod shift_right {
use super::*;
/// 8xy6: Performs bitwise right shift of vX, stores carry-out in vF
#[test]
fn shift_right() {
let (mut cpu, _) = setup_environment();
for word in 0..=0xff {
for reg in 0..=0xff {
let (x, y) = (reg & 0xf, reg >> 4);
// set the register under test to `word`
(cpu.v[x], cpu.v[y]) = (0, word);
/// 8xy6: Performs bitwise right shift of vX, stores carry-out in vF
// TODO: Test with authentic flag set
#[test]
fn shift_right() {
let (mut cpu, _) = setup_environment();
for word in 0..=0xff {
for x in 0..=0xf {
// set the register under test to `word`
cpu.v[x] = word;
cpu.shift_right(x, y);
cpu.shift_right(x, x);
// if the destination is vF, the result was discarded, and only the carry was kept
if x != 0xf {
assert_eq!(cpu.v[x], word >> 1);
// if the destination is vF, the result was discarded, and only the carry was kept
if x != 0xf {
assert_eq!(cpu.v[x], word >> 1);
}
// The borrow flag for subtraction is inverted
assert_eq!(cpu.v[0xf], word & 1);
}
}
}
/// The same test, with [Quirks::shift] quirk flag set
#[test]
fn shift_right_quirk() {
let (mut cpu, _) = setup_environment();
cpu.flags.quirks.shift = true;
for word in 0..=0xff {
for reg in 0..=0xff {
let (x, y) = (reg & 0xf, reg >> 4);
// set the register under test to `word`
cpu.v[x] = word;
cpu.shift_right(x, y);
// if the destination is vF, the result was discarded, and only the carry was kept
if x != 0xf {
assert_eq!(cpu.v[x], word >> 1);
}
// The borrow flag for subtraction is inverted
assert_eq!(cpu.v[0xf], word & 1);
}
// The borrow flag for subtraction is inverted
assert_eq!(cpu.v[0xf], word & 1);
}
}
}
@ -492,24 +586,49 @@ mod math {
}
}
/// 8X_E: Performs bitwise left shift of vX
// TODO: Test with authentic flag set
#[test]
fn shift_left() {
let (mut cpu, _) = setup_environment();
for word in 0..=0xff {
for x in 0..=0xf {
// set the register under test to `word`
cpu.v[x] = word;
mod shift_left {
use super::*;
#[test]
fn shift_left() {
let (mut cpu, _) = setup_environment();
for word in 1..=0xff {
for reg in 0..=0xff {
let (x, y) = (reg & 0xf, reg >> 4);
// set the register under test to `word`
(cpu.v[x], cpu.v[y]) = dbg!(0, word);
cpu.shift_left(x, x);
cpu.shift_left(x, y);
// if the destination is vF, the result was discarded, and only the carry was kept
if x != 0xf {
assert_eq!(cpu.v[x], word << 1);
// if the destination is vF, the result was discarded, and only the carry was kept
if x != 0xf {
assert_eq!(cpu.v[x], word << 1);
}
// The borrow flag for subtraction is inverted
assert_eq!(cpu.v[0xf], word >> 7);
}
}
}
/// 8X_E: Performs bitwise left shift of vX
// TODO: Test with authentic flag set
#[test]
fn shift_left_quirk() {
let (mut cpu, _) = setup_environment();
cpu.flags.quirks.shift = true;
for word in 0..=0xff {
for x in 0..=0xf {
// set the register under test to `word`
cpu.v[x] = word;
cpu.shift_left(x, x);
// if the destination is vF, the result was discarded, and only the carry was kept
if x != 0xf {
assert_eq!(cpu.v[x], word << 1);
}
// The borrow flag for subtraction is inverted
assert_eq!(cpu.v[0xf], word >> 7);
}
// The borrow flag for subtraction is inverted
assert_eq!(cpu.v[0xf], word >> 7);
}
}
}
@ -590,10 +709,10 @@ mod io {
screen: include_bytes!("tests/screens/BC_test.ch8/197.bin"),
steps: 250,
quirks: Quirks {
bin_ops: true,
shift: false,
draw_wait: true,
dma_inc: false,
bin_ops: false,
shift: true,
draw_wait: false,
dma_inc: true,
stupid_jumps: false,
},
},
@ -605,10 +724,10 @@ mod io {
screen: include_bytes!("tests/screens/IBM Logo.ch8/20.bin"),
steps: 56,
quirks: Quirks {
bin_ops: true,
shift: true,
draw_wait: true,
dma_inc: true,
bin_ops: false,
shift: false,
draw_wait: false,
dma_inc: false,
stupid_jumps: false,
},
},
@ -620,11 +739,10 @@ mod io {
screen: include_bytes!("tests/screens/1dcell.ch8/123342.bin"),
steps: 123342,
quirks: Quirks {
bin_ops: true,
shift: true,
draw_wait: false,
dma_inc: true,
bin_ops: false,
shift: false,
draw_wait: true,
dma_inc: false,
stupid_jumps: false,
},
},
@ -634,11 +752,10 @@ mod io {
screen: include_bytes!("tests/screens/1dcell.ch8/2391162.bin"),
steps: 2391162,
quirks: Quirks {
bin_ops: true,
shift: true,
draw_wait: false,
dma_inc: true,
bin_ops: false,
shift: false,
draw_wait: true,
dma_inc: false,
stupid_jumps: false,
},
},

View File

@ -13,7 +13,7 @@ fn run_single_op(op: &[u8]) -> CPU {
},
);
cpu.v = *INDX;
cpu.flags.quirks = Quirks::from(true);
cpu.flags.quirks = Quirks::from(false);
cpu.tick(&mut bus).unwrap(); // will panic if unimplemented
cpu
}

View File

@ -45,8 +45,7 @@ fn run_screentest(test: SuiteTest, mut cpu: CPU, mut bus: Bus) {
#[test]
fn splash_screen() {
let (mut c, b) = setup_environment();
c.flags.quirks = true.into();
let (c, b) = setup_environment();
run_screentest(
SuiteTest {
program: include_bytes!("chip8-test-suite/bin/chip8-test-suite.ch8"),
@ -59,45 +58,42 @@ fn splash_screen() {
#[test]
fn ibm_logo() {
let (mut c, mut b) = setup_environment();
c.flags.quirks = true.into();
b.write(0x1ffu16, 1u8);
let (cpu, mut bus) = setup_environment();
bus.write(0x1ffu16, 1u8);
run_screentest(
SuiteTest {
program: include_bytes!("chip8-test-suite/bin/chip8-test-suite.ch8"),
screen: include_bytes!("screens/chip8-test-suite/IBM.bin"),
},
c,
b,
cpu,
bus,
)
}
#[test]
fn flags_test() {
let (mut c, mut b) = setup_environment();
c.flags.quirks = true.into();
b.write(0x1ffu16, 3u8);
let (cpu, mut bus) = setup_environment();
bus.write(0x1ffu16, 3u8);
run_screentest(
SuiteTest {
program: include_bytes!("chip8-test-suite/bin/chip8-test-suite.ch8"),
screen: include_bytes!("screens/chip8-test-suite/flags.bin"),
},
c,
b,
cpu,
bus,
)
}
#[test]
fn quirks_test() {
let (mut c, mut b) = setup_environment();
c.flags.quirks = true.into();
b.write(0x1feu16, 0x0104u16);
let (cpu, mut bus) = setup_environment();
bus.write(0x1feu16, 0x0104u16);
run_screentest(
SuiteTest {
program: include_bytes!("chip8-test-suite/bin/chip8-test-suite.ch8"),
screen: include_bytes!("screens/chip8-test-suite/quirks.bin"),
},
c,
b,
cpu,
bus,
)
}