Work done on knot-detection. Still figuring out how to best organize the data to look for loops.

This commit is contained in:
mal0420 2022-04-27 17:33:05 -05:00
parent a7c0a3babe
commit a05e4e19c0

View File

@ -1,17 +1,120 @@
/* +----------------+---------+--------------------------+
| Michael Laymon | mal0420 | MichaelLaymon@my.unt.edu |
+----------------+---------+--------------------------+
| Created 2022-04-17 | Updated 2022-04-27 |
+--------------------------+--------------------------+ */
#include <cstdlib> #include <cstdlib>
#include <string> #include <string>
#include <vector> #include <vector>
#include "graph.hpp" #include "graph.hpp"
/* knotted:
Perform the knot detection algorithm on the adjacency matrix to detect deadlocks
(!THIS MODIFIES THE GRAPH!) // goal is to create an group of objects that point to each other the same way the graph does and then detect loops
@params: none, uses class-internal data /*
@returns: enum class resourcetype { P, R };
int:
true if graph is knotted (deadlock) struct PR {
false if graph is not (no deadlock) int value;
*/ resourcetype type; // {P,R}
bool graph::knotted() { resourcenum index;
vector<struct PR*> in;
vector<struct PR*> out;
bool visited;
};
void insertPR( struct PR** head,) {
struct PR* new_node = new PR; // neclare a new resource
new_node->value = new_data;
new_node->in.push_back();
new_node->out.push_back();
new_node->visited = false;
}
void checkKnots () {
//
// convert graph to a list where each item is a resource and has a list of connected resources
// ex: 0 (P1) : 0 (P1), 4 (R2)
// 1 (P2) : 1 (P2), 3 (R1), 5 (R3)
//
}*/
/* convert adjaceny matrix to adjaceny list */
std::vector<std::vector<int>> convert(std::vector<std::vector<int>> x) {
std::vector<std::vector<int>> adjacencyList(x.size());
for ( int ii = 0; ii < x.size(); ii++ )
for ( int jj = 0; jj < x[ii].size(); jj++ )
if (x[ii][jj] == 1)
adjacencyList[ii].push_back(jj);
return adjacencyList;
}
/* linked list data structure */
struct Vertex {
int data; // contents of node
struct Vertex* next; // point to next node
struct Vertex* prev; // point to prev node
bool visited; // flag used to signal visited
};
void pushLL(struct Vertex** list_head, int new_data) {
struct Vertex* new_node = new Vertex; // declare a new vertex
new_node->data = new_data; // populate the data for the new node
new_node->next = (*list_head); // link back to the old list from the new node
new_node->prev = (*list_head); // link back to the old list from the new node
new_node->visited = false;
(*list_head) = new_node; // point list head to the new node
}
bool checkKnot(struct Vertex* v) {
//vector<vector<int>> a;
//vector<vector<int>> AdjacencyList = convert(m);
std::vector<Vertex*> visited; // set to store the visited nodes
while ( v != NULL ) { // loop over the nodes in the linked list if the linked list is not empty
/* detect if node has been visited; if has, then there is a knot (and a loop) */
if ( v->visited ) // find if this node is visited
return true; // immediate return
/* if node not visited, visit it and then continue */
v->visited = true; // mark node as visited
v = v->next; // increment linked list position
}
return false;
}
/* knotted:
Perform the knot detection algorithm on the adjacency matrix to detect deadlocks
@params:
none, uses class-internal data
@returns:
bool:
true iff graph is knotted (deadlock)
false if graph is not knotted (no deadlock)
*/
bool graph::knotted() {
/* Matrix sequel (copy) to preserve original */
matrix revolutions = m;
struct Vertex* neo = NULL; // neo is the head of the linked list
for ( int matrix_row = 0; matrix_row < num_processes + num_resources; matrix_row++ ) {
for ( int matrix_col = 0; matrix_col < num_processes + num_resources; matrix_col++ ) {
if ( matrix_row == matrix_col ) continue; // do not connect processes and resources to themselves
if ( m[matrix_row][matrix_col] == 1 ) {
pushLL(&neo,matrix_row);
}
else {
continue;
}
}
}
return false; return false;
} }