4230-hw-1/BivariateFunction/BivariateFunction.js
2022-07-28 07:38:33 -05:00

288 lines
9.4 KiB
JavaScript

// PointLightedCube_perFragment.js (c) 2012 matsuda, 2022 Jonathon Doran
// BivariateFunction.js (c) 2022 John Breaux
// k: number of subdivisions per edge
// On my machine, k = [1, 256)
// I prefer 96
var k = 64
// f(x, y): function to graph
function f(x, y) {
var u = 80 * x - 40, v = 90 * y - 45;
var norm = Math.sqrt(u * u + v * v);
return (1 / 2) * Math.pow(Math.E, -0.04 * norm) * Math.cos(0.15 * norm)
}
const vertex_shader = `
attribute vec4 a_Position;
attribute vec4 a_Color;
attribute vec4 a_Normal;
uniform mat4 u_MvpMatrix;
uniform mat4 u_ModelMatrix; // Model matrix
uniform mat4 u_NormalMatrix; // Transformation matrix of the normal
varying vec4 v_Color;
varying vec3 v_Normal;
varying vec3 v_Position;
void main()
{
gl_Position = u_MvpMatrix * a_Position;
// Calculate the vertex position in the world coordinate
v_Position = vec3(u_ModelMatrix * a_Position);
v_Normal = normalize(vec3(u_NormalMatrix * a_Normal));
v_Color = a_Color;
} `;
const fragment_shader = `
#ifdef GL_ES
precision mediump float;
#endif
uniform vec3 u_LightColor; // Light color
uniform vec3 u_LightPosition; // Position of the light source
uniform vec3 u_AmbientLight; // Ambient light color
varying vec3 v_Normal;
varying vec3 v_Position;
varying vec4 v_Color;
void main()
{
// Normalize the normal because it is interpolated and not 1.0 in length any more
vec3 normal = normalize(v_Normal);
// Calculate the light direction and make its length 1.
vec3 lightDirection = normalize(u_LightPosition - v_Position);
// The dot product of the light direction and the orientation of a surface (the normal)
float nDotL = max(dot(lightDirection, normal), 0.0);
// Calculate the final color from diffuse reflection and ambient reflection
vec3 diffuse = u_LightColor * v_Color.rgb * nDotL;
vec3 ambient = u_AmbientLight * v_Color.rgb;
gl_FragColor = vec4(diffuse + ambient, v_Color.a);
} `;
function main() {
// Retrieve <canvas> element
var canvas = document.getElementById('webgl');
// Get the rendering context for WebGL
var gl = getWebGLContext(canvas);
if (!gl) {
console.log('Failed to get the rendering context for WebGL');
return;
}
// Initialize shaders
if (!initShaders(gl, vertex_shader, fragment_shader)) {
console.log('Failed to intialize shaders.');
return;
}
//
var n = initVertexBuffers(gl);
if (n < 0) {
console.log('Failed to set the vertex information');
return;
}
// Set the clear color and enable the depth test
gl.clearColor(0.0, 0.0, 0.0, 1.0);
gl.enable(gl.DEPTH_TEST);
// Get the storage locations of uniform variables
var u_ModelMatrix = gl.getUniformLocation(gl.program, 'u_ModelMatrix');
var u_MvpMatrix = gl.getUniformLocation(gl.program, 'u_MvpMatrix');
var u_NormalMatrix = gl.getUniformLocation(gl.program, 'u_NormalMatrix');
var u_LightColor = gl.getUniformLocation(gl.program, 'u_LightColor');
var u_LightPosition = gl.getUniformLocation(gl.program, 'u_LightPosition');
var u_AmbientLight = gl.getUniformLocation(gl.program, 'u_AmbientLight');
if (!u_ModelMatrix || !u_MvpMatrix || !u_NormalMatrix || !u_LightColor || !u_LightPosition || !u_AmbientLight) {
console.log('Failed to get the storage location');
return;
}
// Set the light color (white)
gl.uniform3f(u_LightColor, 1.0, 1.0, 1.0);
// Set the light direction (in the world coordinate)
gl.uniform3f(u_LightPosition, 2.3, 4.0, 3.5);
// Set the ambient light
gl.uniform3f(u_AmbientLight, 0.2, 0.2, 0.2);
var modelMatrix = new Matrix4(); // Model matrix
var mvpMatrix = new Matrix4(); // Model view projection matrix
var normalMatrix = new Matrix4(); // Transformation matrix for normals
// Calculate the model matrix
// Move center of model to center
modelMatrix.setTranslate(-0.5, 0, 0.5)
// Rotate the model upright, around X
modelMatrix.rotate(-90, 1, 0, 0);
// Calculate the view projection matrix
mvpMatrix.setPerspective(30, canvas.width / canvas.height, 1, 100);
var theta = Math.PI / 3
mvpMatrix.lookAt(Math.tan(theta), Math.sin(theta), Math.cos(theta), // Why fiddle with multiple constants when you can just fiddle with one?
0.0, 0.0, 0.0,
0.0, 1.0, 0.0
);
mvpMatrix.multiply(modelMatrix);
// Calculate the matrix to transform the normal based on the model matrix
normalMatrix.setInverseOf(modelMatrix);
normalMatrix.transpose();
// Pass the model matrix to u_ModelMatrix
gl.uniformMatrix4fv(u_ModelMatrix, false, modelMatrix.elements);
// Pass the model view projection matrix to u_mvpMatrix
gl.uniformMatrix4fv(u_MvpMatrix, false, mvpMatrix.elements);
// Pass the transformation matrix for normals to u_NormalMatrix
gl.uniformMatrix4fv(u_NormalMatrix, false, normalMatrix.elements);
// Clear color and depth buffer
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
// Draw the cube
gl.drawElements(gl.TRIANGLES, n, gl.UNSIGNED_SHORT, 0);
}
class BivariateFunction {
vertices = [];
vertex_colors = [];
vertex_normals = [];
indices = [];
resolution = 50
func = (x, y) => { return 0; }
constructor({ resolution = 50, func } = { resolution: 50, func: this.func }) {
this.resolution = resolution;
this.func = func;
this.construct_mesh();
}
generate_quad(width, index) {
var upper = [index + 1, index, index + width + 1]
var lower = [index + 1, index + width + 1, index + width + 2]
return [upper, lower]
}
construct_mesh() {
var vertices = [], vertex_colors = [], vertex_normals = [], triangles = [];
// Generate a
for (var i = 0, y = 0; y <= this.resolution; y++) {
for (var x = 0; x <= this.resolution; x++) {
// Create a new vertex
vertices.push([x / this.resolution, y / this.resolution,
this.func(x / this.resolution, y / this.resolution)]);
// Color this vertex a very pleasing shade of velvet-red
vertex_colors.push([0.625, 0.025, 0.075])
//vertex_colors.push([x / width, y / width, 1]);
// Give it a normal vector
vertex_normals.push([0, 0, 0]);
// If this point is the top-left corner of a quad,
// then create a new quad
if (x < this.resolution && y < this.resolution) {
triangles.push(...this.generate_quad(this.resolution, i));
}
i++
}
}
// Sum the normals around each vertex
for (var triangle of triangles) {
// Turn verts into vec3's
var v = [new vec3(...vertices[triangle[0]]), new vec3(...vertices[triangle[1]]), new vec3(...vertices[triangle[2]])];
// Calculate alpha and beta vectors
var alpha = v[2].sub(v[0]);
var beta = v[1].sub(v[0]);
// Take the cross product & normalize to get the normal
var normal = alpha.cross(beta).normalize();
// Add the normal to each vertex
vertex_normals[triangle[0]] = normal.add(new vec3(...vertex_normals[triangle[0]])).a();
vertex_normals[triangle[1]] = normal.add(new vec3(...vertex_normals[triangle[1]])).a();
vertex_normals[triangle[2]] = normal.add(new vec3(...vertex_normals[triangle[2]])).a();
}
// Average the normals by normalizing the sums of the normals
// this assumes the sum of normals around a vertex is not 0
for (var i = 0; i < vertex_normals.length; i++) {
// taking full advantage of the garbage collector here
vertex_normals[i] = new vec3(...vertex_normals[i]).normalize().a();
}
// Save the vertices and indices as flat arrays
this.vertices = vertices.flat();
this.vertex_colors = vertex_colors.flat();
this.vertex_normals = vertex_normals.flat();
this.indices = triangles.flat();
return
}
}
function initVertexBuffers(gl) {
// Create a new BivariateFunction
var bf = new BivariateFunction({
resolution: k, func: f
});
var vertices = new Float32Array(bf.vertices);
var colors = new Float32Array(bf.vertex_colors);
var normals = new Float32Array(bf.vertex_normals);
var indices = new Uint16Array(bf.indices);
// Write the vertex property to buffers (coordinates, colors and normals)
if (!initArrayBuffer(gl, 'a_Position', vertices, 3)) return -1;
if (!initArrayBuffer(gl, 'a_Color', colors, 3)) return -1;
if (!initArrayBuffer(gl, 'a_Normal', normals, 3)) return -1;
// Unbind the buffer object
gl.bindBuffer(gl.ARRAY_BUFFER, null);
// Write the indices to the buffer object
var indexBuffer = gl.createBuffer();
if (!indexBuffer) {
console.log('Failed to create the buffer object');
return false;
}
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, indices, gl.STATIC_DRAW);
return indices.length;
}
function initArrayBuffer(gl, attribute, data, num) {
// Create a buffer object
var buffer = gl.createBuffer();
if (!buffer) {
console.log('Failed to create the buffer object');
return false;
}
// Write date into the buffer object
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
gl.bufferData(gl.ARRAY_BUFFER, data, gl.STATIC_DRAW);
// Assign the buffer object to the attribute variable
var a_attribute = gl.getAttribLocation(gl.program, attribute);
if (a_attribute < 0) {
console.log('Failed to get the storage location of ' + attribute);
return false;
}
gl.vertexAttribPointer(a_attribute, num, gl.FLOAT, false, 0, 0);
// Enable the assignment of the buffer object to the attribute variable
gl.enableVertexAttribArray(a_attribute);
return true;
}