742 lines
21 KiB
JavaScript
742 lines
21 KiB
JavaScript
|
// cuon-matrix.js (c) 2012 kanda and matsuda
|
||
|
/**
|
||
|
* This is a class treating 4x4 matrix.
|
||
|
* This class contains the function that is equivalent to OpenGL matrix stack.
|
||
|
* The matrix after conversion is calculated by multiplying a conversion matrix from the right.
|
||
|
* The matrix is replaced by the calculated result.
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* Constructor of Matrix4
|
||
|
* If opt_src is specified, new matrix is initialized by opt_src.
|
||
|
* Otherwise, new matrix is initialized by identity matrix.
|
||
|
* @param opt_src source matrix(option)
|
||
|
*/
|
||
|
var Matrix4 = function(opt_src) {
|
||
|
var i, s, d;
|
||
|
if (opt_src && typeof opt_src === 'object' && opt_src.hasOwnProperty('elements')) {
|
||
|
s = opt_src.elements;
|
||
|
d = new Float32Array(16);
|
||
|
for (i = 0; i < 16; ++i) {
|
||
|
d[i] = s[i];
|
||
|
}
|
||
|
this.elements = d;
|
||
|
} else {
|
||
|
this.elements = new Float32Array([1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1]);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Set the identity matrix.
|
||
|
* @return this
|
||
|
*/
|
||
|
Matrix4.prototype.setIdentity = function() {
|
||
|
var e = this.elements;
|
||
|
e[0] = 1; e[4] = 0; e[8] = 0; e[12] = 0;
|
||
|
e[1] = 0; e[5] = 1; e[9] = 0; e[13] = 0;
|
||
|
e[2] = 0; e[6] = 0; e[10] = 1; e[14] = 0;
|
||
|
e[3] = 0; e[7] = 0; e[11] = 0; e[15] = 1;
|
||
|
return this;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Copy matrix.
|
||
|
* @param src source matrix
|
||
|
* @return this
|
||
|
*/
|
||
|
Matrix4.prototype.set = function(src) {
|
||
|
var i, s, d;
|
||
|
|
||
|
s = src.elements;
|
||
|
d = this.elements;
|
||
|
|
||
|
if (s === d) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < 16; ++i) {
|
||
|
d[i] = s[i];
|
||
|
}
|
||
|
|
||
|
return this;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Multiply the matrix from the right.
|
||
|
* @param other The multiply matrix
|
||
|
* @return this
|
||
|
*/
|
||
|
Matrix4.prototype.concat = function(other) {
|
||
|
var i, e, a, b, ai0, ai1, ai2, ai3;
|
||
|
|
||
|
// Calculate e = a * b
|
||
|
e = this.elements;
|
||
|
a = this.elements;
|
||
|
b = other.elements;
|
||
|
|
||
|
// If e equals b, copy b to temporary matrix.
|
||
|
if (e === b) {
|
||
|
b = new Float32Array(16);
|
||
|
for (i = 0; i < 16; ++i) {
|
||
|
b[i] = e[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < 4; i++) {
|
||
|
ai0=a[i]; ai1=a[i+4]; ai2=a[i+8]; ai3=a[i+12];
|
||
|
e[i] = ai0 * b[0] + ai1 * b[1] + ai2 * b[2] + ai3 * b[3];
|
||
|
e[i+4] = ai0 * b[4] + ai1 * b[5] + ai2 * b[6] + ai3 * b[7];
|
||
|
e[i+8] = ai0 * b[8] + ai1 * b[9] + ai2 * b[10] + ai3 * b[11];
|
||
|
e[i+12] = ai0 * b[12] + ai1 * b[13] + ai2 * b[14] + ai3 * b[15];
|
||
|
}
|
||
|
|
||
|
return this;
|
||
|
};
|
||
|
Matrix4.prototype.multiply = Matrix4.prototype.concat;
|
||
|
|
||
|
/**
|
||
|
* Multiply the three-dimensional vector.
|
||
|
* @param pos The multiply vector
|
||
|
* @return The result of multiplication(Float32Array)
|
||
|
*/
|
||
|
Matrix4.prototype.multiplyVector3 = function(pos) {
|
||
|
var e = this.elements;
|
||
|
var p = pos.elements;
|
||
|
var v = new Vector3();
|
||
|
var result = v.elements;
|
||
|
|
||
|
result[0] = p[0] * e[0] + p[1] * e[4] + p[2] * e[ 8] + e[12];
|
||
|
result[1] = p[0] * e[1] + p[1] * e[5] + p[2] * e[ 9] + e[13];
|
||
|
result[2] = p[0] * e[2] + p[1] * e[6] + p[2] * e[10] + e[14];
|
||
|
|
||
|
return v;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Multiply the four-dimensional vector.
|
||
|
* @param pos The multiply vector
|
||
|
* @return The result of multiplication(Float32Array)
|
||
|
*/
|
||
|
Matrix4.prototype.multiplyVector4 = function(pos) {
|
||
|
var e = this.elements;
|
||
|
var p = pos.elements;
|
||
|
var v = new Vector4();
|
||
|
var result = v.elements;
|
||
|
|
||
|
result[0] = p[0] * e[0] + p[1] * e[4] + p[2] * e[ 8] + p[3] * e[12];
|
||
|
result[1] = p[0] * e[1] + p[1] * e[5] + p[2] * e[ 9] + p[3] * e[13];
|
||
|
result[2] = p[0] * e[2] + p[1] * e[6] + p[2] * e[10] + p[3] * e[14];
|
||
|
result[3] = p[0] * e[3] + p[1] * e[7] + p[2] * e[11] + p[3] * e[15];
|
||
|
|
||
|
return v;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Transpose the matrix.
|
||
|
* @return this
|
||
|
*/
|
||
|
Matrix4.prototype.transpose = function() {
|
||
|
var e, t;
|
||
|
|
||
|
e = this.elements;
|
||
|
|
||
|
t = e[ 1]; e[ 1] = e[ 4]; e[ 4] = t;
|
||
|
t = e[ 2]; e[ 2] = e[ 8]; e[ 8] = t;
|
||
|
t = e[ 3]; e[ 3] = e[12]; e[12] = t;
|
||
|
t = e[ 6]; e[ 6] = e[ 9]; e[ 9] = t;
|
||
|
t = e[ 7]; e[ 7] = e[13]; e[13] = t;
|
||
|
t = e[11]; e[11] = e[14]; e[14] = t;
|
||
|
|
||
|
return this;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Calculate the inverse matrix of specified matrix, and set to this.
|
||
|
* @param other The source matrix
|
||
|
* @return this
|
||
|
*/
|
||
|
Matrix4.prototype.setInverseOf = function(other) {
|
||
|
var i, s, d, inv, det;
|
||
|
|
||
|
s = other.elements;
|
||
|
d = this.elements;
|
||
|
inv = new Float32Array(16);
|
||
|
|
||
|
inv[0] = s[5]*s[10]*s[15] - s[5] *s[11]*s[14] - s[9] *s[6]*s[15]
|
||
|
+ s[9]*s[7] *s[14] + s[13]*s[6] *s[11] - s[13]*s[7]*s[10];
|
||
|
inv[4] = - s[4]*s[10]*s[15] + s[4] *s[11]*s[14] + s[8] *s[6]*s[15]
|
||
|
- s[8]*s[7] *s[14] - s[12]*s[6] *s[11] + s[12]*s[7]*s[10];
|
||
|
inv[8] = s[4]*s[9] *s[15] - s[4] *s[11]*s[13] - s[8] *s[5]*s[15]
|
||
|
+ s[8]*s[7] *s[13] + s[12]*s[5] *s[11] - s[12]*s[7]*s[9];
|
||
|
inv[12] = - s[4]*s[9] *s[14] + s[4] *s[10]*s[13] + s[8] *s[5]*s[14]
|
||
|
- s[8]*s[6] *s[13] - s[12]*s[5] *s[10] + s[12]*s[6]*s[9];
|
||
|
|
||
|
inv[1] = - s[1]*s[10]*s[15] + s[1] *s[11]*s[14] + s[9] *s[2]*s[15]
|
||
|
- s[9]*s[3] *s[14] - s[13]*s[2] *s[11] + s[13]*s[3]*s[10];
|
||
|
inv[5] = s[0]*s[10]*s[15] - s[0] *s[11]*s[14] - s[8] *s[2]*s[15]
|
||
|
+ s[8]*s[3] *s[14] + s[12]*s[2] *s[11] - s[12]*s[3]*s[10];
|
||
|
inv[9] = - s[0]*s[9] *s[15] + s[0] *s[11]*s[13] + s[8] *s[1]*s[15]
|
||
|
- s[8]*s[3] *s[13] - s[12]*s[1] *s[11] + s[12]*s[3]*s[9];
|
||
|
inv[13] = s[0]*s[9] *s[14] - s[0] *s[10]*s[13] - s[8] *s[1]*s[14]
|
||
|
+ s[8]*s[2] *s[13] + s[12]*s[1] *s[10] - s[12]*s[2]*s[9];
|
||
|
|
||
|
inv[2] = s[1]*s[6]*s[15] - s[1] *s[7]*s[14] - s[5] *s[2]*s[15]
|
||
|
+ s[5]*s[3]*s[14] + s[13]*s[2]*s[7] - s[13]*s[3]*s[6];
|
||
|
inv[6] = - s[0]*s[6]*s[15] + s[0] *s[7]*s[14] + s[4] *s[2]*s[15]
|
||
|
- s[4]*s[3]*s[14] - s[12]*s[2]*s[7] + s[12]*s[3]*s[6];
|
||
|
inv[10] = s[0]*s[5]*s[15] - s[0] *s[7]*s[13] - s[4] *s[1]*s[15]
|
||
|
+ s[4]*s[3]*s[13] + s[12]*s[1]*s[7] - s[12]*s[3]*s[5];
|
||
|
inv[14] = - s[0]*s[5]*s[14] + s[0] *s[6]*s[13] + s[4] *s[1]*s[14]
|
||
|
- s[4]*s[2]*s[13] - s[12]*s[1]*s[6] + s[12]*s[2]*s[5];
|
||
|
|
||
|
inv[3] = - s[1]*s[6]*s[11] + s[1]*s[7]*s[10] + s[5]*s[2]*s[11]
|
||
|
- s[5]*s[3]*s[10] - s[9]*s[2]*s[7] + s[9]*s[3]*s[6];
|
||
|
inv[7] = s[0]*s[6]*s[11] - s[0]*s[7]*s[10] - s[4]*s[2]*s[11]
|
||
|
+ s[4]*s[3]*s[10] + s[8]*s[2]*s[7] - s[8]*s[3]*s[6];
|
||
|
inv[11] = - s[0]*s[5]*s[11] + s[0]*s[7]*s[9] + s[4]*s[1]*s[11]
|
||
|
- s[4]*s[3]*s[9] - s[8]*s[1]*s[7] + s[8]*s[3]*s[5];
|
||
|
inv[15] = s[0]*s[5]*s[10] - s[0]*s[6]*s[9] - s[4]*s[1]*s[10]
|
||
|
+ s[4]*s[2]*s[9] + s[8]*s[1]*s[6] - s[8]*s[2]*s[5];
|
||
|
|
||
|
det = s[0]*inv[0] + s[1]*inv[4] + s[2]*inv[8] + s[3]*inv[12];
|
||
|
if (det === 0) {
|
||
|
return this;
|
||
|
}
|
||
|
|
||
|
det = 1 / det;
|
||
|
for (i = 0; i < 16; i++) {
|
||
|
d[i] = inv[i] * det;
|
||
|
}
|
||
|
|
||
|
return this;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Calculate the inverse matrix of this, and set to this.
|
||
|
* @return this
|
||
|
*/
|
||
|
Matrix4.prototype.invert = function() {
|
||
|
return this.setInverseOf(this);
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Set the orthographic projection matrix.
|
||
|
* @param left The coordinate of the left of clipping plane.
|
||
|
* @param right The coordinate of the right of clipping plane.
|
||
|
* @param bottom The coordinate of the bottom of clipping plane.
|
||
|
* @param top The coordinate of the top top clipping plane.
|
||
|
* @param near The distances to the nearer depth clipping plane. This value is minus if the plane is to be behind the viewer.
|
||
|
* @param far The distances to the farther depth clipping plane. This value is minus if the plane is to be behind the viewer.
|
||
|
* @return this
|
||
|
*/
|
||
|
Matrix4.prototype.setOrtho = function(left, right, bottom, top, near, far) {
|
||
|
var e, rw, rh, rd;
|
||
|
|
||
|
if (left === right || bottom === top || near === far) {
|
||
|
throw 'null frustum';
|
||
|
}
|
||
|
|
||
|
rw = 1 / (right - left);
|
||
|
rh = 1 / (top - bottom);
|
||
|
rd = 1 / (far - near);
|
||
|
|
||
|
e = this.elements;
|
||
|
|
||
|
e[0] = 2 * rw;
|
||
|
e[1] = 0;
|
||
|
e[2] = 0;
|
||
|
e[3] = 0;
|
||
|
|
||
|
e[4] = 0;
|
||
|
e[5] = 2 * rh;
|
||
|
e[6] = 0;
|
||
|
e[7] = 0;
|
||
|
|
||
|
e[8] = 0;
|
||
|
e[9] = 0;
|
||
|
e[10] = -2 * rd;
|
||
|
e[11] = 0;
|
||
|
|
||
|
e[12] = -(right + left) * rw;
|
||
|
e[13] = -(top + bottom) * rh;
|
||
|
e[14] = -(far + near) * rd;
|
||
|
e[15] = 1;
|
||
|
|
||
|
return this;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Multiply the orthographic projection matrix from the right.
|
||
|
* @param left The coordinate of the left of clipping plane.
|
||
|
* @param right The coordinate of the right of clipping plane.
|
||
|
* @param bottom The coordinate of the bottom of clipping plane.
|
||
|
* @param top The coordinate of the top top clipping plane.
|
||
|
* @param near The distances to the nearer depth clipping plane. This value is minus if the plane is to be behind the viewer.
|
||
|
* @param far The distances to the farther depth clipping plane. This value is minus if the plane is to be behind the viewer.
|
||
|
* @return this
|
||
|
*/
|
||
|
Matrix4.prototype.ortho = function(left, right, bottom, top, near, far) {
|
||
|
return this.concat(new Matrix4().setOrtho(left, right, bottom, top, near, far));
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Set the perspective projection matrix.
|
||
|
* @param left The coordinate of the left of clipping plane.
|
||
|
* @param right The coordinate of the right of clipping plane.
|
||
|
* @param bottom The coordinate of the bottom of clipping plane.
|
||
|
* @param top The coordinate of the top top clipping plane.
|
||
|
* @param near The distances to the nearer depth clipping plane. This value must be plus value.
|
||
|
* @param far The distances to the farther depth clipping plane. This value must be plus value.
|
||
|
* @return this
|
||
|
*/
|
||
|
Matrix4.prototype.setFrustum = function(left, right, bottom, top, near, far) {
|
||
|
var e, rw, rh, rd;
|
||
|
|
||
|
if (left === right || top === bottom || near === far) {
|
||
|
throw 'null frustum';
|
||
|
}
|
||
|
if (near <= 0) {
|
||
|
throw 'near <= 0';
|
||
|
}
|
||
|
if (far <= 0) {
|
||
|
throw 'far <= 0';
|
||
|
}
|
||
|
|
||
|
rw = 1 / (right - left);
|
||
|
rh = 1 / (top - bottom);
|
||
|
rd = 1 / (far - near);
|
||
|
|
||
|
e = this.elements;
|
||
|
|
||
|
e[ 0] = 2 * near * rw;
|
||
|
e[ 1] = 0;
|
||
|
e[ 2] = 0;
|
||
|
e[ 3] = 0;
|
||
|
|
||
|
e[ 4] = 0;
|
||
|
e[ 5] = 2 * near * rh;
|
||
|
e[ 6] = 0;
|
||
|
e[ 7] = 0;
|
||
|
|
||
|
e[ 8] = (right + left) * rw;
|
||
|
e[ 9] = (top + bottom) * rh;
|
||
|
e[10] = -(far + near) * rd;
|
||
|
e[11] = -1;
|
||
|
|
||
|
e[12] = 0;
|
||
|
e[13] = 0;
|
||
|
e[14] = -2 * near * far * rd;
|
||
|
e[15] = 0;
|
||
|
|
||
|
return this;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Multiply the perspective projection matrix from the right.
|
||
|
* @param left The coordinate of the left of clipping plane.
|
||
|
* @param right The coordinate of the right of clipping plane.
|
||
|
* @param bottom The coordinate of the bottom of clipping plane.
|
||
|
* @param top The coordinate of the top top clipping plane.
|
||
|
* @param near The distances to the nearer depth clipping plane. This value must be plus value.
|
||
|
* @param far The distances to the farther depth clipping plane. This value must be plus value.
|
||
|
* @return this
|
||
|
*/
|
||
|
Matrix4.prototype.frustum = function(left, right, bottom, top, near, far) {
|
||
|
return this.concat(new Matrix4().setFrustum(left, right, bottom, top, near, far));
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Set the perspective projection matrix by fovy and aspect.
|
||
|
* @param fovy The angle between the upper and lower sides of the frustum.
|
||
|
* @param aspect The aspect ratio of the frustum. (width/height)
|
||
|
* @param near The distances to the nearer depth clipping plane. This value must be plus value.
|
||
|
* @param far The distances to the farther depth clipping plane. This value must be plus value.
|
||
|
* @return this
|
||
|
*/
|
||
|
Matrix4.prototype.setPerspective = function(fovy, aspect, near, far) {
|
||
|
var e, rd, s, ct;
|
||
|
|
||
|
if (near === far || aspect === 0) {
|
||
|
throw 'null frustum';
|
||
|
}
|
||
|
if (near <= 0) {
|
||
|
throw 'near <= 0';
|
||
|
}
|
||
|
if (far <= 0) {
|
||
|
throw 'far <= 0';
|
||
|
}
|
||
|
|
||
|
fovy = Math.PI * fovy / 180 / 2;
|
||
|
s = Math.sin(fovy);
|
||
|
if (s === 0) {
|
||
|
throw 'null frustum';
|
||
|
}
|
||
|
|
||
|
rd = 1 / (far - near);
|
||
|
ct = Math.cos(fovy) / s;
|
||
|
|
||
|
e = this.elements;
|
||
|
|
||
|
e[0] = ct / aspect;
|
||
|
e[1] = 0;
|
||
|
e[2] = 0;
|
||
|
e[3] = 0;
|
||
|
|
||
|
e[4] = 0;
|
||
|
e[5] = ct;
|
||
|
e[6] = 0;
|
||
|
e[7] = 0;
|
||
|
|
||
|
e[8] = 0;
|
||
|
e[9] = 0;
|
||
|
e[10] = -(far + near) * rd;
|
||
|
e[11] = -1;
|
||
|
|
||
|
e[12] = 0;
|
||
|
e[13] = 0;
|
||
|
e[14] = -2 * near * far * rd;
|
||
|
e[15] = 0;
|
||
|
|
||
|
return this;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Multiply the perspective projection matrix from the right.
|
||
|
* @param fovy The angle between the upper and lower sides of the frustum.
|
||
|
* @param aspect The aspect ratio of the frustum. (width/height)
|
||
|
* @param near The distances to the nearer depth clipping plane. This value must be plus value.
|
||
|
* @param far The distances to the farther depth clipping plane. This value must be plus value.
|
||
|
* @return this
|
||
|
*/
|
||
|
Matrix4.prototype.perspective = function(fovy, aspect, near, far) {
|
||
|
return this.concat(new Matrix4().setPerspective(fovy, aspect, near, far));
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Set the matrix for scaling.
|
||
|
* @param x The scale factor along the X axis
|
||
|
* @param y The scale factor along the Y axis
|
||
|
* @param z The scale factor along the Z axis
|
||
|
* @return this
|
||
|
*/
|
||
|
Matrix4.prototype.setScale = function(x, y, z) {
|
||
|
var e = this.elements;
|
||
|
e[0] = x; e[4] = 0; e[8] = 0; e[12] = 0;
|
||
|
e[1] = 0; e[5] = y; e[9] = 0; e[13] = 0;
|
||
|
e[2] = 0; e[6] = 0; e[10] = z; e[14] = 0;
|
||
|
e[3] = 0; e[7] = 0; e[11] = 0; e[15] = 1;
|
||
|
return this;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Multiply the matrix for scaling from the right.
|
||
|
* @param x The scale factor along the X axis
|
||
|
* @param y The scale factor along the Y axis
|
||
|
* @param z The scale factor along the Z axis
|
||
|
* @return this
|
||
|
*/
|
||
|
Matrix4.prototype.scale = function(x, y, z) {
|
||
|
var e = this.elements;
|
||
|
e[0] *= x; e[4] *= y; e[8] *= z;
|
||
|
e[1] *= x; e[5] *= y; e[9] *= z;
|
||
|
e[2] *= x; e[6] *= y; e[10] *= z;
|
||
|
e[3] *= x; e[7] *= y; e[11] *= z;
|
||
|
return this;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Set the matrix for translation.
|
||
|
* @param x The X value of a translation.
|
||
|
* @param y The Y value of a translation.
|
||
|
* @param z The Z value of a translation.
|
||
|
* @return this
|
||
|
*/
|
||
|
Matrix4.prototype.setTranslate = function(x, y, z) {
|
||
|
var e = this.elements;
|
||
|
e[0] = 1; e[4] = 0; e[8] = 0; e[12] = x;
|
||
|
e[1] = 0; e[5] = 1; e[9] = 0; e[13] = y;
|
||
|
e[2] = 0; e[6] = 0; e[10] = 1; e[14] = z;
|
||
|
e[3] = 0; e[7] = 0; e[11] = 0; e[15] = 1;
|
||
|
return this;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Multiply the matrix for translation from the right.
|
||
|
* @param x The X value of a translation.
|
||
|
* @param y The Y value of a translation.
|
||
|
* @param z The Z value of a translation.
|
||
|
* @return this
|
||
|
*/
|
||
|
Matrix4.prototype.translate = function(x, y, z) {
|
||
|
var e = this.elements;
|
||
|
e[12] += e[0] * x + e[4] * y + e[8] * z;
|
||
|
e[13] += e[1] * x + e[5] * y + e[9] * z;
|
||
|
e[14] += e[2] * x + e[6] * y + e[10] * z;
|
||
|
e[15] += e[3] * x + e[7] * y + e[11] * z;
|
||
|
return this;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Set the matrix for rotation.
|
||
|
* The vector of rotation axis may not be normalized.
|
||
|
* @param angle The angle of rotation (degrees)
|
||
|
* @param x The X coordinate of vector of rotation axis.
|
||
|
* @param y The Y coordinate of vector of rotation axis.
|
||
|
* @param z The Z coordinate of vector of rotation axis.
|
||
|
* @return this
|
||
|
*/
|
||
|
Matrix4.prototype.setRotate = function(angle, x, y, z) {
|
||
|
var e, s, c, len, rlen, nc, xy, yz, zx, xs, ys, zs;
|
||
|
|
||
|
angle = Math.PI * angle / 180;
|
||
|
e = this.elements;
|
||
|
|
||
|
s = Math.sin(angle);
|
||
|
c = Math.cos(angle);
|
||
|
|
||
|
if (0 !== x && 0 === y && 0 === z) {
|
||
|
// Rotation around X axis
|
||
|
if (x < 0) {
|
||
|
s = -s;
|
||
|
}
|
||
|
e[0] = 1; e[4] = 0; e[ 8] = 0; e[12] = 0;
|
||
|
e[1] = 0; e[5] = c; e[ 9] =-s; e[13] = 0;
|
||
|
e[2] = 0; e[6] = s; e[10] = c; e[14] = 0;
|
||
|
e[3] = 0; e[7] = 0; e[11] = 0; e[15] = 1;
|
||
|
} else if (0 === x && 0 !== y && 0 === z) {
|
||
|
// Rotation around Y axis
|
||
|
if (y < 0) {
|
||
|
s = -s;
|
||
|
}
|
||
|
e[0] = c; e[4] = 0; e[ 8] = s; e[12] = 0;
|
||
|
e[1] = 0; e[5] = 1; e[ 9] = 0; e[13] = 0;
|
||
|
e[2] =-s; e[6] = 0; e[10] = c; e[14] = 0;
|
||
|
e[3] = 0; e[7] = 0; e[11] = 0; e[15] = 1;
|
||
|
} else if (0 === x && 0 === y && 0 !== z) {
|
||
|
// Rotation around Z axis
|
||
|
if (z < 0) {
|
||
|
s = -s;
|
||
|
}
|
||
|
e[0] = c; e[4] =-s; e[ 8] = 0; e[12] = 0;
|
||
|
e[1] = s; e[5] = c; e[ 9] = 0; e[13] = 0;
|
||
|
e[2] = 0; e[6] = 0; e[10] = 1; e[14] = 0;
|
||
|
e[3] = 0; e[7] = 0; e[11] = 0; e[15] = 1;
|
||
|
} else {
|
||
|
// Rotation around another axis
|
||
|
len = Math.sqrt(x*x + y*y + z*z);
|
||
|
if (len !== 1) {
|
||
|
rlen = 1 / len;
|
||
|
x *= rlen;
|
||
|
y *= rlen;
|
||
|
z *= rlen;
|
||
|
}
|
||
|
nc = 1 - c;
|
||
|
xy = x * y;
|
||
|
yz = y * z;
|
||
|
zx = z * x;
|
||
|
xs = x * s;
|
||
|
ys = y * s;
|
||
|
zs = z * s;
|
||
|
|
||
|
e[ 0] = x*x*nc + c;
|
||
|
e[ 1] = xy *nc + zs;
|
||
|
e[ 2] = zx *nc - ys;
|
||
|
e[ 3] = 0;
|
||
|
|
||
|
e[ 4] = xy *nc - zs;
|
||
|
e[ 5] = y*y*nc + c;
|
||
|
e[ 6] = yz *nc + xs;
|
||
|
e[ 7] = 0;
|
||
|
|
||
|
e[ 8] = zx *nc + ys;
|
||
|
e[ 9] = yz *nc - xs;
|
||
|
e[10] = z*z*nc + c;
|
||
|
e[11] = 0;
|
||
|
|
||
|
e[12] = 0;
|
||
|
e[13] = 0;
|
||
|
e[14] = 0;
|
||
|
e[15] = 1;
|
||
|
}
|
||
|
|
||
|
return this;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Multiply the matrix for rotation from the right.
|
||
|
* The vector of rotation axis may not be normalized.
|
||
|
* @param angle The angle of rotation (degrees)
|
||
|
* @param x The X coordinate of vector of rotation axis.
|
||
|
* @param y The Y coordinate of vector of rotation axis.
|
||
|
* @param z The Z coordinate of vector of rotation axis.
|
||
|
* @return this
|
||
|
*/
|
||
|
Matrix4.prototype.rotate = function(angle, x, y, z) {
|
||
|
return this.concat(new Matrix4().setRotate(angle, x, y, z));
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Set the viewing matrix.
|
||
|
* @param eyeX, eyeY, eyeZ The position of the eye point.
|
||
|
* @param centerX, centerY, centerZ The position of the reference point.
|
||
|
* @param upX, upY, upZ The direction of the up vector.
|
||
|
* @return this
|
||
|
*/
|
||
|
Matrix4.prototype.setLookAt = function(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ) {
|
||
|
var e, fx, fy, fz, rlf, sx, sy, sz, rls, ux, uy, uz;
|
||
|
|
||
|
fx = centerX - eyeX;
|
||
|
fy = centerY - eyeY;
|
||
|
fz = centerZ - eyeZ;
|
||
|
|
||
|
// Normalize f.
|
||
|
rlf = 1 / Math.sqrt(fx*fx + fy*fy + fz*fz);
|
||
|
fx *= rlf;
|
||
|
fy *= rlf;
|
||
|
fz *= rlf;
|
||
|
|
||
|
// Calculate cross product of f and up.
|
||
|
sx = fy * upZ - fz * upY;
|
||
|
sy = fz * upX - fx * upZ;
|
||
|
sz = fx * upY - fy * upX;
|
||
|
|
||
|
// Normalize s.
|
||
|
rls = 1 / Math.sqrt(sx*sx + sy*sy + sz*sz);
|
||
|
sx *= rls;
|
||
|
sy *= rls;
|
||
|
sz *= rls;
|
||
|
|
||
|
// Calculate cross product of s and f.
|
||
|
ux = sy * fz - sz * fy;
|
||
|
uy = sz * fx - sx * fz;
|
||
|
uz = sx * fy - sy * fx;
|
||
|
|
||
|
// Set to this.
|
||
|
e = this.elements;
|
||
|
e[0] = sx;
|
||
|
e[1] = ux;
|
||
|
e[2] = -fx;
|
||
|
e[3] = 0;
|
||
|
|
||
|
e[4] = sy;
|
||
|
e[5] = uy;
|
||
|
e[6] = -fy;
|
||
|
e[7] = 0;
|
||
|
|
||
|
e[8] = sz;
|
||
|
e[9] = uz;
|
||
|
e[10] = -fz;
|
||
|
e[11] = 0;
|
||
|
|
||
|
e[12] = 0;
|
||
|
e[13] = 0;
|
||
|
e[14] = 0;
|
||
|
e[15] = 1;
|
||
|
|
||
|
// Translate.
|
||
|
return this.translate(-eyeX, -eyeY, -eyeZ);
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Multiply the viewing matrix from the right.
|
||
|
* @param eyeX, eyeY, eyeZ The position of the eye point.
|
||
|
* @param centerX, centerY, centerZ The position of the reference point.
|
||
|
* @param upX, upY, upZ The direction of the up vector.
|
||
|
* @return this
|
||
|
*/
|
||
|
Matrix4.prototype.lookAt = function(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ) {
|
||
|
return this.concat(new Matrix4().setLookAt(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ));
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Multiply the matrix for project vertex to plane from the right.
|
||
|
* @param plane The array[A, B, C, D] of the equation of plane "Ax + By + Cz + D = 0".
|
||
|
* @param light The array which stored coordinates of the light. if light[3]=0, treated as parallel light.
|
||
|
* @return this
|
||
|
*/
|
||
|
Matrix4.prototype.dropShadow = function(plane, light) {
|
||
|
var mat = new Matrix4();
|
||
|
var e = mat.elements;
|
||
|
|
||
|
var dot = plane[0] * light[0] + plane[1] * light[1] + plane[2] * light[2] + plane[3] * light[3];
|
||
|
|
||
|
e[ 0] = dot - light[0] * plane[0];
|
||
|
e[ 1] = - light[1] * plane[0];
|
||
|
e[ 2] = - light[2] * plane[0];
|
||
|
e[ 3] = - light[3] * plane[0];
|
||
|
|
||
|
e[ 4] = - light[0] * plane[1];
|
||
|
e[ 5] = dot - light[1] * plane[1];
|
||
|
e[ 6] = - light[2] * plane[1];
|
||
|
e[ 7] = - light[3] * plane[1];
|
||
|
|
||
|
e[ 8] = - light[0] * plane[2];
|
||
|
e[ 9] = - light[1] * plane[2];
|
||
|
e[10] = dot - light[2] * plane[2];
|
||
|
e[11] = - light[3] * plane[2];
|
||
|
|
||
|
e[12] = - light[0] * plane[3];
|
||
|
e[13] = - light[1] * plane[3];
|
||
|
e[14] = - light[2] * plane[3];
|
||
|
e[15] = dot - light[3] * plane[3];
|
||
|
|
||
|
return this.concat(mat);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Multiply the matrix for project vertex to plane from the right.(Projected by parallel light.)
|
||
|
* @param normX, normY, normZ The normal vector of the plane.(Not necessary to be normalized.)
|
||
|
* @param planeX, planeY, planeZ The coordinate of arbitrary points on a plane.
|
||
|
* @param lightX, lightY, lightZ The vector of the direction of light.(Not necessary to be normalized.)
|
||
|
* @return this
|
||
|
*/
|
||
|
Matrix4.prototype.dropShadowDirectionally = function(normX, normY, normZ, planeX, planeY, planeZ, lightX, lightY, lightZ) {
|
||
|
var a = planeX * normX + planeY * normY + planeZ * normZ;
|
||
|
return this.dropShadow([normX, normY, normZ, -a], [lightX, lightY, lightZ, 0]);
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Constructor of Vector3
|
||
|
* If opt_src is specified, new vector is initialized by opt_src.
|
||
|
* @param opt_src source vector(option)
|
||
|
*/
|
||
|
var Vector3 = function(opt_src) {
|
||
|
var v = new Float32Array(3);
|
||
|
if (opt_src && typeof opt_src === 'object') {
|
||
|
v[0] = opt_src[0]; v[1] = opt_src[1]; v[2] = opt_src[2];
|
||
|
}
|
||
|
this.elements = v;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Normalize.
|
||
|
* @return this
|
||
|
*/
|
||
|
Vector3.prototype.normalize = function() {
|
||
|
var v = this.elements;
|
||
|
var c = v[0], d = v[1], e = v[2], g = Math.sqrt(c*c+d*d+e*e);
|
||
|
if(g){
|
||
|
if(g == 1)
|
||
|
return this;
|
||
|
} else {
|
||
|
v[0] = 0; v[1] = 0; v[2] = 0;
|
||
|
return this;
|
||
|
}
|
||
|
g = 1/g;
|
||
|
v[0] = c*g; v[1] = d*g; v[2] = e*g;
|
||
|
return this;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Constructor of Vector4
|
||
|
* If opt_src is specified, new vector is initialized by opt_src.
|
||
|
* @param opt_src source vector(option)
|
||
|
*/
|
||
|
var Vector4 = function(opt_src) {
|
||
|
var v = new Float32Array(4);
|
||
|
if (opt_src && typeof opt_src === 'object') {
|
||
|
v[0] = opt_src[0]; v[1] = opt_src[1]; v[2] = opt_src[2]; v[3] = opt_src[3];
|
||
|
}
|
||
|
this.elements = v;
|
||
|
}
|